Ramsey numbers of link hypergraphs

Xiaoyu He
Stanford University
Joint work with Jacob Fox

December 12, 2019

Hypergraphs

Definition

A k-uniform hypergraph, or simply k-graph, $H=(V, E)$ is a set V of vertices and a set $E \subseteq\binom{V}{k}$ of edges.

Hypergraphs

Definition

A k-uniform hypergraph, or simply k-graph, $H=(V, E)$ is a set V of vertices and a set $E \subseteq\binom{V}{k}$ of edges.

Figure: A 3-graph on 5 vertices and 3 edges.

Definition

The Ramsey number $r(H, G)$ of two k-graphs H and G is the smallest N such that for any k-graph Γ on N vertices, either $H \subset \Gamma$ or $G \subset \bar{\Gamma}$.

Hypergraph Ramsey numbers

Definition

The Ramsey number $r(H, G)$ of two k-graphs H and G is the smallest N such that for any k-graph Γ on N vertices, either $H \subset \Gamma$ or $G \subset \bar{\Gamma}$.

For example, $r\left(K_{3}, K_{3}\right)=6$.

Hypergraph Ramsey numbers

Definition

The Ramsey number $r(H, G)$ of two k-graphs H and G is the smallest N such that for any k-graph Γ on N vertices, either $H \subset \Gamma$ or $G \subset \bar{\Gamma}$.

For example, $r\left(K_{3}, K_{3}\right)=6$.

```
Theorem (Ramsey 1930)
For any k\geq1 and k-graphs H and G,r(H,G)<\infty.
```


Hypergraph Ramsey numbers

Definition

The Ramsey number $r(H, G)$ of two k-graphs H and G is the smallest N such that for any k-graph Γ on N vertices, either $H \subset \Gamma$ or $G \subset \bar{\Gamma}$.

For example, $r\left(K_{3}, K_{3}\right)=6$.

```
Theorem (Ramsey 1930)
For any \(k \geq 1\) and \(k\)-graphs \(H\) and \(G, r(H, G)<\infty\).
```


Theorem (Erdős-Szekeres 1935)

In any sufficiently large set of points in general position in the plane, some n form a convex polygon.

Hypergraph Ramsey numbers

Definition

The Ramsey number $r(H, G)$ of two k-graphs H and G is the smallest N such that for any k-graph Γ on N vertices, either $H \subset \Gamma$ or $G \subset \bar{\Gamma}$.

For example, $r\left(K_{3}, K_{3}\right)=6$.

Theorem (Ramsey 1930)

For any $k \geq 1$ and k-graphs H and $G, r(H, G)<\infty$.

Theorem (Erdős-Szekeres 1935)

In any sufficiently large set of points in general position in the plane, some n form a convex polygon.

Remark: this can be deduced from $r\left(K_{n}^{(3)}, K_{n}^{(3)}\right)<\infty$ or from $r\left(K_{5}^{(4)}, K_{n}^{(4)}\right)<\infty$.

Philosophical Outline

1. Most hypergraph Ramsey problems reduce to uniformity 3 , but not uniformity 2.
2. Most hypergraph Ramsey problems reduce to uniformity 3, but not uniformity 2.
3. Quasirandomness conditions for hypergraphs are not all equivalent.
4. Most hypergraph Ramsey problems reduce to uniformity 3, but not uniformity 2.
5. Quasirandomness conditions for hypergraphs are not all equivalent.
6. We can design Ramsey hypergraphs that are globally quasirandom but locally structured.

Diagonal Ramsey numbers

Theorem (Erdős 1947, Erdős-Szekeres 1935)

$$
2^{n / 2} \leq r\left(K_{n}, K_{n}\right) \leq 2^{2 n} .
$$

Diagonal Ramsey numbers

Theorem (Erdős 1947, Erdős-Szekeres 1935)

$$
2^{n / 2} \leq r\left(K_{n}, K_{n}\right) \leq 2^{2 n} .
$$

The lower bound construction is the random graph.

Diagonal Ramsey numbers

Theorem (Erdős 1947, Erdős-Szekeres 1935)

$$
2^{n / 2} \leq r\left(K_{n}, K_{n}\right) \leq 2^{2 n} .
$$

The lower bound construction is the random graph.

Theorem (Erdős-Hajnal 1960s, Erdős-Rado 1952)

For $k \geq 3$,

$$
t_{k-1}\left(\Omega\left(n^{2}\right)\right) \leq r\left(K_{n}^{(k)}, K_{n}^{(k)}\right) \leq t_{k}(O(n)),
$$

where $t_{k}(n)$ is the tower function $t_{1}(n)=n, t_{k+1}(n)=2^{t_{k}(n)}$.

Diagonal Ramsey numbers

Theorem (Erdős 1947, Erdős-Szekeres 1935)

$$
2^{n / 2} \leq r\left(K_{n}, K_{n}\right) \leq 2^{2 n} .
$$

The lower bound construction is the random graph.

Theorem (Erdős-Hajnal 1960s, Erdős-Rado 1952)

For $k \geq 3$,

$$
t_{k-1}\left(\Omega\left(n^{2}\right)\right) \leq r\left(K_{n}^{(k)}, K_{n}^{(k)}\right) \leq t_{k}(O(n)),
$$

where $t_{k}(n)$ is the tower function $t_{1}(n)=n, t_{k+1}(n)=2^{t_{k}(n)}$.

Remark

Both the upper and lower bounds are recursive in nature, proving bounds on uniformity $k+1$ using uniformity k. However, the lower bound (stepping up lemma) only works starting from $k=3$.

Off-diagonal Ramsey numbers

In the graph case:
Theorem (Kim 1995, Ajtai-Komlós-Szemerédi 1980)

$$
r\left(K_{3}, K_{n}\right)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Off-diagonal Ramsey numbers

In the graph case:
Theorem (Kim 1995, Ajtai-Komlós-Szemerédi 1980)

$$
r\left(K_{3}, K_{n}\right)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Central problem in the development of the probabilistic method:

- Alterations (Erdős 1961)
- Lovász Local Lemma (Spencer 1975)
- Large deviation inequalities (Krivelevich 1995)
- Rödl nibble (Kim 1995)
- The H-free process (Erdős-Suen-Winkler 1995, Bohman-Keevash 2010)

Off-diagonal Ramsey numbers

In the graph case:
Theorem (Kim 1995, Ajtai-Komlós-Szemerédi 1980)

$$
r\left(K_{3}, K_{n}\right)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Central problem in the development of the probabilistic method:

- Alterations (Erdős 1961)
- Lovász Local Lemma (Spencer 1975)
- Large deviation inequalities (Krivelevich 1995)
- Rödl nibble (Kim 1995)
- The H-free process (Erdős-Suen-Winkler 1995, Bohman-Keevash 2010)
For almost all other H, the order of $r\left(H, K_{n}\right)$ is still unknown.

Off-diagonal hypergraph Ramsey numbers

Let $K_{4}^{(3)}-e$ be the 3-graph with 4 vertices and 3 edges.
Theorem (Erdős-Hajnal 1972)

$$
2^{\Omega(n)} \leq r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \leq 2^{O(n \log n)} .
$$

Off-diagonal hypergraph Ramsey numbers

Let $K_{4}^{(3)}-e$ be the 3-graph with 4 vertices and 3 edges.
Theorem (Erdős-Hajnal 1972)

$$
2^{\Omega(n)} \leq r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \leq 2^{O(n \log n)} .
$$

This was also the best known lower bound for $r\left(K_{4}^{(3)}, K_{n}^{(3)}\right)$ until:
Theorem (Conlon-Fox-Sudakov 2010)

$$
2^{\Omega(n \log n)} \leq r\left(K_{4}^{(3)}, K_{n}^{(3)}\right) \leq 2^{O\left(n^{2} \log n\right)} .
$$

Off-diagonal hypergraph Ramsey numbers

Let $K_{4}^{(3)}-e$ be the 3-graph with 4 vertices and 3 edges.
Theorem (Erdős-Hajnal 1972)

$$
2^{\Omega(n)} \leq r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \leq 2^{O(n \log n)} .
$$

This was also the best known lower bound for $r\left(K_{4}^{(3)}, K_{n}^{(3)}\right)$ until:
Theorem (Conlon-Fox-Sudakov 2010)

$$
2^{\Omega(n \log n)} \leq r\left(K_{4}^{(3)}, K_{n}^{(3)}\right) \leq 2^{O\left(n^{2} \log n\right)} .
$$

Our main result:

Theorem (Fox-H. 2019)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)=2^{\Theta(n \log n)} .
$$

The Erdős-Hajnal tournament construction

Theorem (Erdős-Hajnal 1972)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \geq 2^{\Omega(n)}
$$

Theorem (Erdős-Hajnal 1972)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \geq 2^{\Omega(n)} .
$$

Remark

A purely random 3-graph on N vertices does poorly, since edge density $p=N^{-c}$, which makes the independence number $\approx N^{c / 2}$.

The Erdős-Hajnal tournament construction
Theorem (Erdős-Hajnal 1972)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \geq 2^{\Omega(n)} .
$$

Proof.

Let T be a random tournament on $N=2^{c n}$ vertices:

The Erdős-Hajnal tournament construction
Theorem (Erdős-Hajnal 1972)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \geq 2^{\Omega(n)} .
$$

Proof.

Let T be a random tournament on $N=2^{c n}$ vertices:

The Erdős-Hajnal tournament construction

Theorem (Erdős-Hajnal 1972)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \geq 2^{\Omega(n)} .
$$

Proof.

Let T be a random tournament on $N=2^{c n}$ vertices:

Let Γ be the 3-graph of cyclic triangles in T :

The Erdős-Hajnal tournament construction

Theorem (Erdős-Hajnal 1972)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \geq 2^{\Omega(n)} .
$$

Proof.

Let T be a random tournament on $N=2^{c n}$ vertices:

Let Γ be the 3-graph of cyclic triangles in T :

The Erdős-Hajnal tournament construction

Theorem (Erdős-Hajnal 1972)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \geq 2^{\Omega(n)} .
$$

Proof.

Let T be a random tournament on $N=2^{c n}$ vertices:

Let Γ be the 3-graph of cyclic triangles in T :

The Erdős-Hajnal tournament construction

Theorem (Erdős-Hajnal 1972)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \geq 2^{\Omega(n)} .
$$

Proof.

Let T be a random tournament on $N=2^{c n}$ vertices:

Let Γ be the 3-graph of cyclic triangles in T :

The Erdős-Hajnal tournament construction

Proof (continued).

Among any four vertices in T, at most two out of four triples form cyclic triangles, so Γ doesn't contain $K_{4}^{(3)}-e$.

Proof (continued).

Among any four vertices in T, at most two out of four triples form cyclic triangles, so Γ doesn't contain $K_{4}^{(3)}-e$.
The expected number of independent sets of size n in Γ is

Digression: Quasirandomness for hypergraphs

Theorem (Chung, Graham, Wilson 1989)
If H is a fixed labelled graph, G is a labelled graph on n vertices, and every vertex subset $U \subseteq V(G)$ contains $p\binom{|U|}{2}+o\left(n^{2}\right)$ edges, then G contains $(1+o(1)) p^{e(H)} n^{\nu(H)}$ labelled copies of H.

Digression: Quasirandomness for hypergraphs

Theorem (Chung, Graham, Wilson 1989)

If H is a fixed labelled graph, G is a labelled graph on n vertices, and every vertex subset $U \subseteq V(G)$ contains $p\binom{|U|}{2}+o\left(n^{2}\right)$ edges, then G contains $(1+o(1)) p^{e(H)} n^{v(H)}$ labelled copies of H.

Example: counting triangles

If every linear-sized subset of a graph G has edge density $1 / 4$, then G has triangle density $1 / 64$.

Digression: Quasirandomness for hypergraphs

Theorem (Chung, Graham, Wilson 1989)

If H is a fixed labelled graph, G is a labelled graph on n vertices, and every vertex subset $U \subseteq V(G)$ contains $p\binom{|U|}{2}+o\left(n^{2}\right)$ edges, then G contains $(1+o(1)) p^{e(H)} n^{v(H)}$ labelled copies of H.

Example: counting triangles

If every linear-sized subset of a graph G has edge density $1 / 4$, then G has triangle density $1 / 64$.

Surprise

Such a statement is false for 3-graphs!

Digression: Quasirandomness for hypergraphs

If Γ is the 3-graph of cyclic triangles in a random tournament T on N vertices, then every subset $U \subseteq V(G)$ contains

$$
\frac{1}{4}\binom{|U|}{3}+o\left(N^{3}\right)
$$

edges, and yet Γ is $K_{4}^{(3)}$-free.

Digression: Quasirandomness for hypergraphs

If Γ is the 3-graph of cyclic triangles in a random tournament T on N vertices, then every subset $U \subseteq V(G)$ contains

$$
\frac{1}{4}\binom{|U|}{3}+o\left(N^{3}\right)
$$

edges, and yet Γ is $K_{4}^{(3)}$-free.

Remarks

- This is a type of random construction that isn't available in uniformity 2: it is quasirandom in the sense of edge densities and non-quasirandom in the sense of subgraph counts.

Digression: Quasirandomness for hypergraphs

If Γ is the 3-graph of cyclic triangles in a random tournament T on N vertices, then every subset $U \subseteq V(G)$ contains

$$
\frac{1}{4}\binom{|U|}{3}+o\left(N^{3}\right)
$$

edges, and yet Γ is $K_{4}^{(3)}$-free.

Remarks

- This is a type of random construction that isn't available in uniformity 2: it is quasirandom in the sense of edge densities and non-quasirandom in the sense of subgraph counts.
- The existence of such hypergraphs has serious implications for hypergraph regularity.

Improving the tournament lower bound

Theorem (Fox-H. 2019)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)=2^{\Theta(n \log n)} .
$$

Links in hypergraphs

Definition

If G is a k-graph, the link G_{v} of a vertex v in G is the $(k-1)$-graph on $V(G) \backslash\{v\}$ whose edges come from deleting v from the edges of G containing v.

Links in hypergraphs

Definition

If G is a k-graph, the link G_{v} of a vertex v in G is the $(k-1)$-graph on $V(G) \backslash\{v\}$ whose edges come from deleting v from the edges of G containing v.

Figure: The links of each vertex.

Links in hypergraphs

Definition

If G is a k-graph, the link G_{v} of a vertex v in G is the $(k-1)$-graph on $V(G) \backslash\{v\}$ whose edges come from deleting v from the edges of G containing v.

Note: G is $\left(K_{4}^{(3)}-e\right)$-free iff the links G_{V} are all triangle-free.

Figure: The links of each vertex.

Links of the tournament construction

Figure: The links of each vertex.

Links of the tournament construction

Observations

(1) If Γ is the 3-graph of cyclic triangles in any tournament, then the links Γ_{V} of its vertices are bipartite.

Figure: The links of each vertex.

Links of the tournament construction

Observations

(1) If Γ is the 3-graph of cyclic triangles in any tournament, then the links Γ_{v} of its vertices are bipartite.
(2) If Γ is any 3-graph with bipartite links, then 「 contains no $K_{4}^{(3)}-e$.

Figure: The links of each vertex.

Links of the tournament construction

Figure: The links of each vertex.

Observations

(1) If Γ is the 3 -graph of cyclic triangles in any tournament, then the links Γ_{v} of its vertices are bipartite.
(2) If Γ is any 3 -graph with bipartite links, then 「 contains no $K_{4}^{(3)}-e$.
(3) We can reproduce the Erdős-Hajnal lower bound by taking 「 to be a 3-graph with random bipartite links.

Random bipartite links

Modified Construction

Let Γ be a random 3-graph on N vertices specified by N bipartitions $U_{v} \cup W_{v}=V(G) \backslash\{v\}$ indexed by the vertices v. A triple $\{u, v, w\}$ is an edge of Γ iff v and w are on the opposite sides of the bipartition for u, u and w are on opposite sides of the bipartition for v, and u and v are on opposite sides of the bipartition for w.

Random bipartite links

Modified Construction

Let Γ be a random 3-graph on N vertices specified by N bipartitions $U_{v} \cup W_{v}=V(G) \backslash\{v\}$ indexed by the vertices v. A triple $\{u, v, w\}$ is an edge of Γ iff v and w are on the opposite sides of the bipartition for u, u and w are on opposite sides of the bipartition for v, and u and v are on opposite sides of the bipartition for w.

Lemma

If the bipartitions are chosen uniformly at random, then w.h.p. Γ is $\left(K_{4}^{(3)}-e\right)$-free, has edge density $1 / 8+o(1)$, and independence number $\Theta(\log N)$.

Random bipartite links

Modified Construction

Let Γ be a random 3-graph on N vertices specified by N bipartitions $U_{v} \cup W_{v}=V(G) \backslash\{v\}$ indexed by the vertices v. A triple $\{u, v, w\}$ is an edge of Γ iff v and w are on the opposite sides of the bipartition for u, u and w are on opposite sides of the bipartition for v, and u and v are on opposite sides of the bipartition for w.

Lemma

If the bipartitions are chosen uniformly at random, then w.h.p. Γ is $\left(K_{4}^{(3)}-e\right)$-free, has edge density $1 / 8+o(1)$, and independence number $\Theta(\log N)$.

But we want independence number $n=O(\log N / \log \log N)$ to get $N=2^{\Omega(n \log n)}$, so the links can't be bipartite.

Our Construction

Naive random

construction

(1)

Problem
Needs to be very sparse.

Our Construction

Naive random construction

(1)

Problem

Needs to be very sparse.

Random bipartite

 links(1)

Problem

Large independence number due to bipartition.

Our Construction

Naive random construction

(1)

Problem

Needs to be very sparse.

Random bipartite links

(1)

Problem

Large independence number due to bipartition.

Random

 triangle-free links(1)

Our construction

Links are random blowups of a small triangle-free graph.

Proof of main result

Theorem (Fox-H. 2019)
$r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)=2^{\Theta(n \log n)}$.

Theorem (Fox-H. 2019)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)=2^{\Theta(n \log n)}
$$

Construction

Fix an auxiliary graph A on $m=n^{C}$ vertices, which is triangle-free and has edge density $p=m^{-2 / 3}$.

Theorem (Fox-H. 2019)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)=2^{\Theta(n \log n)} .
$$

Construction

Fix an auxiliary graph A on $m=n^{C}$ vertices, which is triangle-free and has edge density $p=m^{-2 / 3}$.
Let Γ be the 3 -graph on $N=2^{c n \log n}$ vertices specified by a map $\chi: V(\Gamma)^{2} \rightarrow V(A)$. A triple $\{u, v, w\}$ is an edge of Γ iff $\chi(u, v) \sim \chi(u, w), \chi(v, u) \sim \chi(v, w)$, and $\chi(w, u) \sim \chi(w, v)$.

Proof of main result

Theorem (Fox-H. 2019)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)=2^{\Theta(n \log n)} .
$$

Construction

Fix an auxiliary graph A on $m=n^{C}$ vertices, which is triangle-free and has edge density $p=m^{-2 / 3}$.
Let Γ be the 3-graph on $N=2^{c n \log n}$ vertices specified by a map $\chi: V(\Gamma)^{2} \rightarrow V(A)$. A triple $\{u, v, w\}$ is an edge of Γ iff $\chi(u, v) \sim \chi(u, w), \chi(v, u) \sim \chi(v, w)$, and $\chi(w, u) \sim \chi(w, v)$. Choose χ uniformly at random. For each v, the link Γ_{v} will be a subgraph of a blowup of A, so it is triangle-free.

Proof of main result

Theorem (Fox-H. 2019)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)=2^{\Theta(n \log n)}
$$

Construction

Fix an auxiliary graph A on $m=n^{C}$ vertices, which is triangle-free and has edge density $p=m^{-2 / 3}$.
Let Γ be the 3-graph on $N=2^{c n \log n}$ vertices specified by a map $\chi: V(\Gamma)^{2} \rightarrow V(A)$. A triple $\{u, v, w\}$ is an edge of Γ iff $\chi(u, v) \sim \chi(u, w), \chi(v, u) \sim \chi(v, w)$, and $\chi(w, u) \sim \chi(w, v)$. Choose χ uniformly at random. For each v, the link Γ_{v} will be a subgraph of a blowup of A, so it is triangle-free.

Lemma (Hard part)

If Γ is the random 3-graph described above, the independence number of Γ is less than $n=O(\log N / \log \log N)$.

General link hypergraphs

Definition

If G is a k-graph, the link hypergraph L_{G} of G is the $(k+1)$-graph on $V(G) \cup\{v\}$ (for a new vertex v) whose edges come from inserting v into all the edges of G.

General link hypergraphs

Definition

If G is a k-graph, the link hypergraph L_{G} of G is the $(k+1)$-graph on $V(G) \cup\{v\}$ (for a new vertex v) whose edges come from inserting v into all the edges of G.

Theorem (Conlon-Fox-Sudakov 2010)

If G is bipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=n^{\Theta(1)}$.
If G is non-bipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=2^{\Omega(n)}$.

General link hypergraphs

Definition

If G is a k-graph, the link hypergraph L_{G} of G is the $(k+1)$-graph on $V(G) \cup\{v\}$ (for a new vertex v) whose edges come from inserting v into all the edges of G.

Theorem (Conlon-Fox-Sudakov 2010)

If G is bipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=n^{\Theta(1)}$.
If G is non-bipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=2^{\Omega(n)}$.

Theorem (Fox-H. 2019)

If G is non-bipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=2^{\Theta(n \log n)}$.

General link hypergraphs

Definition

If G is a k-graph, the link hypergraph L_{G} of G is the $(k+1)$-graph on $V(G) \cup\{v\}$ (for a new vertex v) whose edges come from inserting v into all the edges of G.

Theorem (Conlon-Fox-Sudakov 2010)

If G is bipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=n^{\Theta(1)}$.
If G is non-bipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=2^{\Omega(n)}$.

Theorem (Fox-H. 2019)

If G is non-bipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=2^{\Theta(n \log n)}$.

Question

How do the implicit constants depend on G ?

Diagonal Ramsey numbers via link hypergraphs

Theorem (Fox-H. 2019)

For all $s \geq 3$ and $n \geq 1$, we have

$$
r\left(L_{K_{s}}, K_{n, n, n}^{(3)}\right)=\binom{n+s}{s}^{\Theta(n)}
$$

Diagonal Ramsey numbers via link hypergraphs

Theorem (Fox-H. 2019)

For all $s \geq 3$ and $n \geq 1$, we have

$$
r\left(L_{K_{s}}, K_{n, n, n}^{(3)}\right)=\binom{n+s}{s}^{\Theta(n)}
$$

Corollary
If $n \geq 3$, then

$$
r\left(L_{K_{n}}, K_{n, n, n}^{(3)}\right)=2^{\Theta\left(n^{2}\right)}
$$

Diagonal Ramsey numbers via link hypergraphs

Theorem (Fox-H. 2019)

For all $s \geq 3$ and $n \geq 1$, we have

$$
r\left(L_{K_{s}}, K_{n, n, n}^{(3)}\right)=\binom{n+s}{s}^{\Theta(n)}
$$

Corollary

If $n \geq 3$, then

$$
r\left(L_{K_{n}}, K_{n, n, n}^{(3)}\right)=2^{\Theta\left(n^{2}\right)}
$$

Remark

This gives a very "sparse" proof that $r\left(K_{n}^{(3)}, K_{n}^{(3)}\right)=2^{\Omega\left(n^{2}\right)}$, and suggests that the diagonal Ramsey number should be much bigger.

Ramsey transition thresholds

Definition

Let $r_{k}(s, t ; n)$ be the minimum N such that in any k-graph on N vertices, either some s vertices span t edges, or else there is an independent set of size n.

Ramsey transition thresholds

Definition

Let $r_{k}(s, t ; n)$ be the minimum N such that in any k-graph on N vertices, either some s vertices span t edges, or else there is an independent set of size n.

Examples

Thus $r_{3}(4,4 ; n)=r\left(K_{4}^{(3)}, K_{n}^{(3)}\right)$ and $r_{3}(4,3 ; n)=r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)$.

Ramsey transition thresholds

Definition

Let $r_{k}(s, t ; n)$ be the minimum N such that in any k-graph on N vertices, either some s vertices span t edges, or else there is an independent set of size n.

Examples

Thus $r_{3}(4,4 ; n)=r\left(K_{4}^{(3)}, K_{n}^{(3)}\right)$ and $r_{3}(4,3 ; n)=r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)$.

Conjecture (Erdős-Hajnal 1972)

For every $s>k \geq 3$, there exists a unique $t=h_{1}^{(k)}(s)$ such that $r_{k}(s, t-1 ; n)$ is polynomial in n and $r_{k}(s, t ; n)$ is exponential in n.

Ramsey transition thresholds

Definition

Let $r_{k}(s, t ; n)$ be the minimum N such that in any k-graph on N vertices, either some s vertices span t edges, or else there is an independent set of size n.

Examples

Thus $r_{3}(4,4 ; n)=r\left(K_{4}^{(3)}, K_{n}^{(3)}\right)$ and $r_{3}(4,3 ; n)=r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)$.

Conjecture (Erdős-Hajnal 1972)

For every $s>k \geq 3$, there exists a unique $t=h_{1}^{(k)}(s)$ such that $r_{k}(s, t-1 ; n)$ is polynomial in n and $r_{k}(s, t ; n)$ is exponential in n. In general, for every $1 \leq i \leq k-2$ there is a unique $t=h_{i}^{(k)}(s)$ such that $r_{k}(s, t-1 ; n)$ has tower height i and $r_{k}(s, t ; n)$ has tower height $i+1$ (as a function of n).

Theorem (Conlon-Fox-Sudakov 2010)

For infinitely many $s, h_{1}^{(3)}(s)$ exists and $h_{1}^{(3)}(s)-1=T(s)$ which is the maximum number of cyclic triangles in a tournament on s vertices.

The polynomial-to-exponential transition

Theorem (Conlon-Fox-Sudakov 2010)

For infinitely many $s, h_{1}^{(3)}(s)$ exists and $h_{1}^{(3)}(s)-1=T(s)$ which is the maximum number of cyclic triangles in a tournament on s vertices.

Theorem (Mubayi-Razborov 2019)

For all $s>k \geq 4, h_{1}^{(k)}(s)$ exists and $h_{1}^{(k)}(s)-1=g^{(k)}(s)$ which is the maximum number of ordered rainbow tournaments on k vertices in an ordered $\binom{k}{2}$-edge-colored tournament on s vertices.

The polynomial-to-exponential transition

Theorem (Conlon-Fox-Sudakov 2010)

For infinitely many $s, h_{1}^{(3)}(s)$ exists and $h_{1}^{(3)}(s)-1=T(s)$ which is the maximum number of cyclic triangles in a tournament on s vertices.

Theorem (Mubayi-Razborov 2019)

For all $s>k \geq 4, h_{1}^{(k)}(s)$ exists and $h_{1}^{(k)}(s)-1=g^{(k)}(s)$ which is the maximum number of ordered rainbow tournaments on k vertices in an ordered $\binom{k}{2}$-edge-colored tournament on s vertices.

Both results relate thresholds to the general problem of inducibility: given a (possibly colored and/or directed) graph on k vertices, what is the maximum number of induced copies of it in a graph on s vertices?

Open problem: inducibility for $k=3$

Conjecture (Erdős-Hajnal 1972)

For all $s \geq 3$, the maximum number of ordered rainbow triangles in a 3-edge-coloring of K_{s} is $g^{(3)}(s)$, where $g^{(3)}(s)=0$ if $s<3$ and otherwise

$$
g^{(3)}(s)=\max _{a+b+c=s}\left\{g^{(3)}(a)+g^{(3)}(b)+g^{(3)}(c)+a b c\right\} .
$$

Skipping the exponential order

Theorem (Fox-H. 2019)

We have $r_{3}(4,2 ; n)=n^{\Theta(1)}$ but $r_{3}(4,3 ; n)=2^{\Omega(n \log n)}$.

Skipping the exponential order

Theorem (Fox-H. 2019)

We have $r_{3}(4,2 ; n)=n^{\Theta(1)}$ but $r_{3}(4,3 ; n)=2^{\Omega(n \log n)}$.

Theorem (Fox-H. 2019)

For s large and $.26\binom{s}{3} \leq t \leq .46\binom{s}{3}, r_{3}(s, t ; n)=2^{\Theta(n \log n)}$.

Skipping the exponential order

Theorem (Fox-H. 2019)

We have $r_{3}(4,2 ; n)=n^{\Theta(1)}$ but $r_{3}(4,3 ; n)=2^{\Omega(n \log n)}$.

Theorem (Fox-H. 2019)

For s large and $.26\binom{s}{3} \leq t \leq .46\binom{s}{3}, r_{3}(s, t ; n)=2^{\Theta(n \log n)}$.

Conjecture

For all $s \geq 4$, there exists t for which $r_{3}(s, t-1 ; n)=n^{\Theta(1)}$ and $r_{3}(s, t ; n)=2^{\Omega(n \log n)}$.

Thank you!

