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Hypergraphs

Definition

A k-uniform hypergraph, or simply k-graph, H = (V ,E ) is a set V
of vertices and a set E ⊆

(V
k

)
of edges.
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Figure: A 3-graph on 5 vertices and 3 edges.



Hypergraphs

Definition

A k-uniform hypergraph, or simply k-graph, H = (V ,E ) is a set V
of vertices and a set E ⊆

(V
k

)
of edges.

1

2

34

5

Figure: A 3-graph on 5 vertices and 3 edges.



Hypergraph Ramsey numbers

Definition

The Ramsey number r(H,G ) of two k-graphs H and G is the
smallest N such that for any k-graph Γ on N vertices, either
H ⊂ Γ or G ⊂ Γ.

For example, r(K3,K3) = 6.

Theorem (Ramsey 1930)

For any k ≥ 1 and k-graphs H and G , r(H,G ) <∞.

Theorem (Erdős-Szekeres 1935)

In any sufficiently large set of points in general position in the
plane, some n form a convex polygon.

Remark: this can be deduced from r(K
(3)
n ,K

(3)
n ) <∞ or from

r(K
(4)
5 ,K

(4)
n ) <∞.
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Philosophical Outline

1. Most hypergraph Ramsey problems reduce to uniformity
3, but not uniformity 2.

2. Quasirandomness conditions for hypergraphs are not all
equivalent.

3. We can design Ramsey hypergraphs that are globally
quasirandom but locally structured.
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Diagonal Ramsey numbers

Theorem (Erdős 1947, Erdős-Szekeres 1935)

2n/2 ≤ r(Kn,Kn) ≤ 22n.

The lower bound construction is the random graph.

Theorem (Erdős-Hajnal 1960s, Erdős-Rado 1952)

For k ≥ 3,

tk−1(Ω(n2)) ≤ r(K
(k)
n ,K

(k)
n ) ≤ tk(O(n)),

where tk(n) is the tower function t1(n) = n, tk+1(n) = 2tk (n).

Remark

Both the upper and lower bounds are recursive in nature, proving
bounds on uniformity k + 1 using uniformity k. However, the lower
bound (stepping up lemma) only works starting from k = 3.
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2n/2 ≤ r(Kn,Kn) ≤ 22n.

The lower bound construction is the random graph.
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Off-diagonal Ramsey numbers

In the graph case:

Theorem (Kim 1995, Ajtai-Komlós-Szemerédi 1980)

r(K3,Kn) = Θ

(
n2

log n

)
.

Central problem in the development of the probabilistic method:

Alterations (Erdős 1961)

Lovász Local Lemma (Spencer 1975)

Large deviation inequalities (Krivelevich 1995)

Rödl nibble (Kim 1995)

The H-free process (Erdős-Suen-Winkler 1995,
Bohman-Keevash 2010)

For almost all other H, the order of r(H,Kn) is still unknown.
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Lovász Local Lemma (Spencer 1975)

Large deviation inequalities (Krivelevich 1995)
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Off-diagonal hypergraph Ramsey numbers

Let K
(3)
4 − e be the 3-graph with 4 vertices and 3 edges.

Theorem (Erdős-Hajnal 1972)

2Ω(n) ≤ r(K
(3)
4 − e,K

(3)
n ) ≤ 2O(n log n).

This was also the best known lower bound for r(K
(3)
4 ,K

(3)
n ) until:

Theorem (Conlon-Fox-Sudakov 2010)

2Ω(n log n) ≤ r(K
(3)
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(3)
n ) ≤ 2O(n2 log n).

Our main result:

Theorem (Fox-H. 2019)
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The Erdős-Hajnal tournament construction

Theorem (Erdős-Hajnal 1972)

r(K
(3)
4 − e,K

(3)
n ) ≥ 2Ω(n).

Proof.

Let T be a random tournament
on N = 2cn vertices:

1
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Let Γ be the 3-graph of cyclic
triangles in T :
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Theorem (Erdős-Hajnal 1972)

r(K
(3)
4 − e,K

(3)
n ) ≥ 2Ω(n).

Remark

A purely random 3-graph on N vertices does poorly, since edge
density p = N−c , which makes the independence number ≈ Nc/2.
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The Erdős-Hajnal tournament construction

Proof (continued).

Among any four vertices in T , at most two out of four triples form

cyclic triangles, so Γ doesn’t contain K
(3)
4 − e.

The expected number of independent sets of size n in Γ is(
N

n

)
· n! · 2−(n2) < 1.
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Digression: Quasirandomness for hypergraphs

Theorem (Chung, Graham, Wilson 1989)

If H is a fixed labelled graph, G is a labelled graph on n vertices,
and every vertex subset U ⊆ V (G ) contains p

(|U|
2

)
+ o(n2) edges,

then G contains (1 + o(1))pe(H)nv(H) labelled copies of H.

Example: counting triangles

If every linear-sized subset of a graph G has edge density 1/4, then
G has triangle density 1/64.

Surprise

Such a statement is false for 3-graphs!
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Digression: Quasirandomness for hypergraphs

If Γ is the 3-graph of cyclic triangles in a random tournament T on
N vertices, then every subset U ⊆ V (G ) contains

1

4

(
|U|
3

)
+ o(N3)

edges, and yet Γ is K
(3)
4 -free.

Remarks

This is a type of random construction that isn’t available in
uniformity 2: it is quasirandom in the sense of edge densities
and non-quasirandom in the sense of subgraph counts.

The existence of such hypergraphs has serious implications for
hypergraph regularity.
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Improving the tournament lower bound

Theorem (Fox-H. 2019)

r(K
(3)
4 − e,K

(3)
n ) = 2Θ(n log n).

1

2

34

5



Links in hypergraphs

Definition

If G is a k-graph, the link Gv of a
vertex v in G is the (k − 1)-graph
on V (G ) \ {v} whose edges
come from deleting v from the
edges of G containing v .

Note: G is (K
(3)
4 − e)-free iff the

links Gv are all triangle-free.
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Figure: The links of each vertex.
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Links of the tournament construction
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Figure: The links of each vertex.

Observations

1 If Γ is the 3-graph of cyclic
triangles in any tournament,
then the links Γv of its
vertices are bipartite.

2 If Γ is any 3-graph with
bipartite links, then Γ

contains no K
(3)
4 − e.

3 We can reproduce the
Erdős-Hajnal lower bound by
taking Γ to be a 3-graph
with random bipartite links.
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Random bipartite links

Modified Construction

Let Γ be a random 3-graph on N vertices specified by N
bipartitions Uv ∪Wv = V (G ) \ {v} indexed by the vertices v . A
triple {u, v ,w} is an edge of Γ iff v and w are on the opposite
sides of the bipartition for u, u and w are on opposite sides of the
bipartition for v , and u and v are on opposite sides of the
bipartition for w .

Lemma

If the bipartitions are chosen uniformly at random, then w.h.p. Γ is

(K
(3)
4 − e)-free, has edge density 1/8 + o(1), and independence

number Θ(logN).

But we want independence number n = O(logN/ log logN) to get
N = 2Ω(n log n), so the links can’t be bipartite.
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Naive random
construction

1

Problem

Needs to be very
sparse.

Random bipartite
links
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Large independence
number due to
bipartition.

Random
triangle-free links

1

Our construction

Links are random
blowups of a small
triangle-free graph.
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Proof of main result

Theorem (Fox-H. 2019)

r(K
(3)
4 − e,K

(3)
n ) = 2Θ(n log n).

Construction

Fix an auxiliary graph A on m = nC vertices, which is triangle-free
and has edge density p = m−2/3.
Let Γ be the 3-graph on N = 2cn log n vertices specified by a map
χ : V (Γ)2 → V (A). A triple {u, v ,w} is an edge of Γ iff
χ(u, v) ∼ χ(u,w), χ(v , u) ∼ χ(v ,w), and χ(w , u) ∼ χ(w , v).
Choose χ uniformly at random. For each v , the link Γv will be a
subgraph of a blowup of A, so it is triangle-free.

Lemma (Hard part)

If Γ is the random 3-graph described above, the independence
number of Γ is less than n = O(logN/ log logN).
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General link hypergraphs

Definition

If G is a k-graph, the link hypergraph LG of G is the (k + 1)-graph
on V (G ) ∪ {v} (for a new vertex v) whose edges come from
inserting v into all the edges of G .

Theorem (Conlon-Fox-Sudakov 2010)

If G is bipartite, then r(LG ,K
(3)
n ) = nΘ(1).

If G is non-bipartite, then r(LG ,K
(3)
n ) = 2Ω(n).

Theorem (Fox-H. 2019)

If G is non-bipartite, then r(LG ,K
(3)
n ) = 2Θ(n log n).

Question

How do the implicit constants depend on G?
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Diagonal Ramsey numbers via link hypergraphs

Theorem (Fox-H. 2019)

For all s ≥ 3 and n ≥ 1, we have

r(LKs ,K
(3)
n,n,n) =

(
n + s

s

)Θ(n)

.

Corollary

If n ≥ 3, then
r(LKn ,K

(3)
n,n,n) = 2Θ(n2).

Remark

This gives a very “sparse” proof that r(K
(3)
n ,K

(3)
n ) = 2Ω(n2), and

suggests that the diagonal Ramsey number should be much bigger.
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Ramsey transition thresholds

Definition

Let rk(s, t; n) be the minimum N such that in any k-graph on N
vertices, either some s vertices span t edges, or else there is an
independent set of size n.

Examples

Thus r3(4, 4; n) = r(K
(3)
4 ,K

(3)
n ) and r3(4, 3; n) = r(K

(3)
4 − e,K

(3)
n ).

Conjecture (Erdős-Hajnal 1972)

For every s > k ≥ 3, there exists a unique t = h
(k)
1 (s) such that

rk(s, t − 1; n) is polynomial in n and rk(s, t; n) is exponential in n.

In general, for every 1 ≤ i ≤ k − 2 there is a unique t = h
(k)
i (s)

such that rk(s, t − 1; n) has tower height i and rk(s, t; n) has tower
height i + 1 (as a function of n).
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Conjecture (Erdős-Hajnal 1972)

For every s > k ≥ 3, there exists a unique t = h
(k)
1 (s) such that

rk(s, t − 1; n) is polynomial in n and rk(s, t; n) is exponential in n.

In general, for every 1 ≤ i ≤ k − 2 there is a unique t = h
(k)
i (s)

such that rk(s, t − 1; n) has tower height i and rk(s, t; n) has tower
height i + 1 (as a function of n).



Ramsey transition thresholds

Definition

Let rk(s, t; n) be the minimum N such that in any k-graph on N
vertices, either some s vertices span t edges, or else there is an
independent set of size n.

Examples

Thus r3(4, 4; n) = r(K
(3)
4 ,K

(3)
n ) and r3(4, 3; n) = r(K

(3)
4 − e,K

(3)
n ).

Conjecture (Erdős-Hajnal 1972)

For every s > k ≥ 3, there exists a unique t = h
(k)
1 (s) such that

rk(s, t − 1; n) is polynomial in n and rk(s, t; n) is exponential in n.

In general, for every 1 ≤ i ≤ k − 2 there is a unique t = h
(k)
i (s)

such that rk(s, t − 1; n) has tower height i and rk(s, t; n) has tower
height i + 1 (as a function of n).



The polynomial-to-exponential transition

Theorem (Conlon-Fox-Sudakov 2010)

For infinitely many s, h
(3)
1 (s) exists and h

(3)
1 (s)− 1 = T (s) which

is the maximum number of cyclic triangles in a tournament on s
vertices.

Theorem (Mubayi-Razborov 2019)

For all s > k ≥ 4, h
(k)
1 (s) exists and h

(k)
1 (s)− 1 = g (k)(s) which is

the maximum number of ordered rainbow tournaments on k
vertices in an ordered

(k
2

)
-edge-colored tournament on s vertices.

Both results relate thresholds to the general problem of
inducibility: given a (possibly colored and/or directed) graph on k
vertices, what is the maximum number of induced copies of it in a
graph on s vertices?
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Open problem: inducibility for k = 3

Conjecture (Erdős-Hajnal 1972)

For all s ≥ 3, the maximum number of ordered rainbow triangles in
a 3-edge-coloring of Ks is g (3)(s), where g (3)(s) = 0 if s < 3 and
otherwise

g (3)(s) = max
a+b+c=s

{g (3)(a) + g (3)(b) + g (3)(c) + abc}.



Skipping the exponential order

Theorem (Fox-H. 2019)

We have r3(4, 2; n) = nΘ(1) but r3(4, 3; n) = 2Ω(n log n).

Theorem (Fox-H. 2019)

For s large and .26
(s

3

)
≤ t ≤ .46

(s
3

)
, r3(s, t; n) = 2Θ(n log n).

Conjecture

For all s ≥ 4, there exists t for which r3(s, t − 1; n) = nΘ(1) and
r3(s, t; n) = 2Ω(n log n).
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Thank you!
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