Lower bounds for online Ramsey numbers

Xiaoyu He

Joint work with David Conlon, Jacob Fox, and Andrey Grinshpun

Random Structures & Algorithms 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Background

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Ramsey's Theorem (infinitary version)

In any red-blue edge coloring of the infinite complete graph $K_{\mathbb{N}}$, there exist arbitrarily large monochromatic cliques.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ramsey's Theorem (infinitary version)

In any red-blue edge coloring of the infinite complete graph $K_{\mathbb{N}}$, there exist arbitrarily large monochromatic cliques.

The main goal of graph Ramsey theory is to determine how much of a hidden coloring of $K_{\mathbb{N}}$ one must reveal to find a monochromatic K_n .

Ramsey's Theorem (infinitary version)

In any red-blue edge coloring of the infinite complete graph $K_{\mathbb{N}}$, there exist arbitrarily large monochromatic cliques.

The main goal of graph Ramsey theory is to determine how much of a hidden coloring of $K_{\mathbb{N}}$ one must reveal to find a monochromatic K_n .

Variants of (diagonal) Ramsey numbers

► The Ramsey number r(n) is the smallest N such that any coloring of K_N contains a monochromatic K_n.

Ramsey's Theorem (infinitary version)

In any red-blue edge coloring of the infinite complete graph $K_{\mathbb{N}}$, there exist arbitrarily large monochromatic cliques.

The main goal of graph Ramsey theory is to determine how much of a hidden coloring of $K_{\mathbb{N}}$ one must reveal to find a monochromatic K_n .

Variants of (diagonal) Ramsey numbers

- ► The Ramsey number r(n) is the smallest N such that any coloring of K_N contains a monochromatic K_n.
- ► The size Ramsey number r̂(n) is the smallest number of edges of K_N one must reveal, all at once, to find a monochromatic K_n.

Ramsey's Theorem (infinitary version)

In any red-blue edge coloring of the infinite complete graph $K_{\mathbb{N}}$, there exist arbitrarily large monochromatic cliques.

The main goal of graph Ramsey theory is to determine how much of a hidden coloring of $K_{\mathbb{N}}$ one must reveal to find a monochromatic K_n .

Variants of (diagonal) Ramsey numbers

- ► The Ramsey number r(n) is the smallest N such that any coloring of K_N contains a monochromatic K_n.
- ► The size Ramsey number r̂(n) is the smallest number of edges of K_N one must reveal, all at once, to find a monochromatic K_n.
- The online Ramsey number r̃(n) is the smallest number of edges of K_N one must reveal, one at a time, to find a monochromatic K_n.

Lower bounds

The best lower bounds on r(n) are all proved using the probabilistic method.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lower bounds

The best lower bounds on r(n) are all proved using the probabilistic method.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

►
$$r(n) \ge (1 + o(1)) \frac{n}{e\sqrt{2}} \cdot 2^{n/2}$$
 (Erdős '47).

•
$$r(n) \ge (1 + o(1)) \frac{n\sqrt{2}}{e} \cdot 2^{n/2}$$
 (Spencer '75).

Lower bounds

The best lower bounds on r(n) are all proved using the probabilistic method.

Upper bounds

The best upper bounds on r(n) are all proved using the Erdős-Szekeres method.

Lower bounds

The best lower bounds on r(n) are all proved using the probabilistic method.

Upper bounds

The best upper bounds on r(n) are all proved using the Erdős-Szekeres method.

Definition

The online Ramsey number $\tilde{r}(n)$ is the smallest number of edges of $K_{\mathbb{N}}$ one must reveal, **one at a time**, to find a monochromatic K_n .

Definition

The online Ramsey number $\tilde{r}(n)$ is the smallest number of edges of $K_{\mathbb{N}}$ one must reveal, **one at a time**, to find a monochromatic K_n . Alternatively, we imagine that you, the Builder, are building a graph one edge at a time and an adversarial Painter paints your edges red or blue. You want to build a monochromatic K_n as quickly as possible.

Definition

The online Ramsey number $\tilde{r}(n)$ is the smallest number of edges of $K_{\mathbb{N}}$ one must reveal, **one at a time**, to find a monochromatic K_n . Alternatively, we imagine that you, the Builder, are building a graph one edge at a time and an adversarial Painter paints your edges red or blue. You want to build a monochromatic K_n as quickly as possible.

Folklore bounds

$$2^{n/2} \leq \frac{r(n)}{2} \leq \tilde{r}(n) \leq \min\left\{2^{2n}, \binom{r(n)}{2}\right\}.$$

Folklore bounds

$$2^{n/2} \leq \frac{r(n)}{2} \leq \tilde{r}(n) \leq \min\left\{2^{2n}, \binom{r(n)}{2}\right\}.$$

Folklore bounds

$$2^{n/2} \leq \frac{r(n)}{2} \leq \tilde{r}(n) \leq \min\left\{2^{2n}, \binom{r(n)}{2}\right\}.$$

Theorem (Conlon '09)

There exists 0 < c < 1 such that for infinitely many n,

$$\widetilde{r}(n) \leq c^n \binom{r(n)}{2}.$$

Theorem (Conlon, Fox, Grinshpun, H. '19)

$$\tilde{r}(n) \geq 2^{(2-\sqrt{2})n-O(1)} \approx 2^{0.586n}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Theorem (Conlon, Fox, Grinshpun, H. '19)

$$\tilde{r}(n) \geq 2^{(2-\sqrt{2})n-O(1)} \approx 2^{0.586n}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Main Ideas

Random painter.

Theorem (Conlon, Fox, Grinshpun, H. '19)

$$\tilde{r}(n) \geq 2^{(2-\sqrt{2})n-O(1)} \approx 2^{0.586n}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main Ideas

- Random painter.
- Method of conditional expectation.

Theorem (Conlon, Fox, Grinshpun, H. '19)

$$\tilde{r}(n) \geq 2^{(2-\sqrt{2})n-O(1)} \approx 2^{0.586n}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main Ideas

- Random painter.
- Method of conditional expectation.
- Restrict to sets with large matchings.

The Method of Conditional Expectation (Erdős-Selfridge '73)

• For each *n*-set $U \subseteq V(K_{\mathbb{N}})$, define

 $w(U,t) \coloneqq \begin{cases} \left(\frac{1}{2}\right)^{\binom{n}{2}-e(U)} & U \text{ is monochromatic red at time } t \\ 0 & \text{otherwise.} \end{cases}$

・ロト・日本・モート モー うへぐ

The Method of Conditional Expectation (Erdős-Selfridge '73)

▶ For each *n*-set $U \subseteq V(K_{\mathbb{N}})$, define

 $w(U,t) \coloneqq \begin{cases} \left(\frac{1}{2}\right)^{\binom{n}{2}-e(U)} & U \text{ is monochromatic red at time } t \\ 0 & \text{otherwise.} \end{cases}$

Suppose Builder plays the game for a total of N timesteps.
 We may pretend there are only 2N vertices.

The Method of Conditional Expectation (Erdős-Selfridge '73)

▶ For each *n*-set $U \subseteq V(K_{\mathbb{N}})$, define

 $w(U,t) \coloneqq \begin{cases} \left(\frac{1}{2}\right)^{\binom{n}{2}-e(U)} & U \text{ is monochromatic red at time } t \\ 0 & \text{otherwise.} \end{cases}$

- Suppose Builder plays the game for a total of N timesteps.
 We may pretend there are only 2N vertices.
- Define the total weight function

$$w(t) := \sum_{U \subseteq K_{2N}} w(U, t).$$

This function is a martingale in t.

The Method of Conditional Expectation (Erdős-Selfridge '73)

The total weight function

$$w(t) = \sum_{U \subseteq V(K_{2N})} w(U, t),$$

is an upper bound on the number of red K_n 's that Builder can find.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Method of Conditional Expectation (Erdős-Selfridge '73)

The total weight function

$$w(t) = \sum_{U \subseteq V(K_{2N})} w(U, t),$$

is an upper bound on the number of red K_n 's that Builder can find.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► Thus, if E[w(N)] < ¹/₂, then with positive probability Builder has not found a monochromatic K_n in N moves.

The Method of Conditional Expectation (Erdős-Selfridge '73)

The total weight function

$$w(t) = \sum_{U \subseteq V(K_{2N})} w(U, t),$$

is an upper bound on the number of red K_n 's that Builder can find.

- ► Thus, if E[w(N)] < ¹/₂, then with positive probability Builder has not found a monochromatic K_n in N moves.
- Since w is a martingale,

$$\mathbb{E}[w(N)] = w(0) \leq (2N)^n \cdot \left(rac{1}{2}
ight)^{\binom{n}{2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Method of Conditional Expectation (Erdős-Selfridge '73)

The total weight function

$$w(t) = \sum_{U \subseteq V(K_{2N})} w(U, t),$$

is an upper bound on the number of red K_n 's that Builder can find.

- ► Thus, if E[w(N)] < ¹/₂, then with positive probability Builder has not found a monochromatic K_n in N moves.
- Since w is a martingale,

$$\mathbb{E}[w(N)] = w(0) \leq (2N)^n \cdot \left(rac{1}{2}
ight)^{\binom{n}{2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• This proves that
$$\tilde{r}(n) \ge 2^{n/2}$$
.

Theorem (Alon '81)

If H is a graph with n vertices which contains a k-matching, and G has N edges, then the number of copies of H in G is $O(N^{n-k})$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (Alon '81)

If H is a graph with n vertices which contains a k-matching, and G has N edges, then the number of copies of H in G is $O(N^{n-k})$.

Sets with large matchings

► Thus, the number of *n*-sets U is about (2N)ⁿ, but the number of *n*-sets U containing a k-matching is O(N^{n-k}).

Theorem (Alon '81)

If H is a graph with n vertices which contains a k-matching, and G has N edges, then the number of copies of H in G is $O(N^{n-k})$.

Sets with large matchings

- ► Thus, the number of *n*-sets U is about (2N)ⁿ, but the number of *n*-sets U containing a k-matching is O(N^{n-k}).
- We define the restricted weight function

$$w_k(t) \coloneqq \sum_{U ext{ has a } k ext{-matching}} w(U,t).$$

Theorem (Alon '81)

If H is a graph with n vertices which contains a k-matching, and G has N edges, then the number of copies of H in G is $O(N^{n-k})$.

Sets with large matchings

- ► Thus, the number of *n*-sets U is about (2N)ⁿ, but the number of *n*-sets U containing a k-matching is O(N^{n-k}).
- We define the restricted weight function

$$w_k(t) \coloneqq \sum_{\substack{U ext{ has a } k- ext{matching}}} w(U,t).$$

• It is possible to show by induction on k, N, and n that

$$\mathbb{E}[w_k(N)] \leq (2N)^{n-k} (\frac{1}{2})^{\binom{n}{2}-k(k-1)}.$$

Sets with large matchings

• It is possible to show by induction on k, N, and n that

 $\mathbb{E}[w_k(N)] \leq (2N)^{n-k} (\frac{1}{2})^{\binom{n}{2}-k(k-1)}.$

Sets with large matchings

• It is possible to show by induction on k, N, and n that

$$\mathbb{E}[w_k(N)] \leq (2N)^{n-k} (\frac{1}{2})^{\binom{n}{2}-k(k-1)}.$$

• This implies that for any $k \leq n/2$,

$$\tilde{r}(n) \geq 2^{\frac{\binom{n}{2}-k(k-1)}{n-k}-O(1)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sets with large matchings

• It is possible to show by induction on k, N, and n that

$$\mathbb{E}[w_k(N)] \leq (2N)^{n-k} (\frac{1}{2})^{\binom{n}{2}-k(k-1)}.$$

• This implies that for any $k \leq n/2$,

$$\tilde{r}(n) \geq 2^{\frac{\binom{n}{2}-k(k-1)}{n-k}-O(1)}.$$

• Optimizing $k = (1 - \frac{1}{\sqrt{2}})n$ completes the proof that

$$\tilde{r}(n) \geq 2^{(2-\sqrt{2})n-O(1)}.$$

The Subgraph Query Problem

Definition

Suppose we are given a finite graph H and want to find a copy of H in a hidden infinite random graph $G(\mathbb{N}, p)$, $p \in (0, 1)$. Let f(H, p) be the number of adjacencies one must reveal, one at a time, to find a copy of H with probability $\frac{1}{2}$.

Definition

Suppose we are given a finite graph H and want to find a copy of H in a hidden infinite random graph $G(\mathbb{N}, p)$, $p \in (0, 1)$. Let f(H, p) be the number of adjacencies one must reveal, one at a time, to find a copy of H with probability $\frac{1}{2}$.

Related work:

Definition

Suppose we are given a finite graph H and want to find a copy of H in a hidden infinite random graph $G(\mathbb{N}, p)$, $p \in (0, 1)$. Let f(H, p) be the number of adjacencies one must reveal, one at a time, to find a copy of H with probability $\frac{1}{2}$.

Related work:

Theorem (Ferber, Krivelevich, Sudakov, Vieira '16) Whenever $p > \frac{\log n + \log \log n + \omega(1)}{n}$, one can find (w.h.p.) a Hamiltonian cycle in a hidden G(n, p) by revealing at most (1 + o(1))n edges.

Definition

Suppose we are given a finite graph H and want to find a copy of H in a hidden infinite random graph $G(\mathbb{N}, p)$, $p \in (0, 1)$. Let f(H, p) be the number of adjacencies one must reveal, one at a time, to find a copy of H with probability $\frac{1}{2}$. Related work:

Theorem (Ferber, Krivelevich, Sudakov, Vieira '16) Whenever $p > \frac{\log n + \log \log n + \omega(1)}{n}$, one can find (w.h.p.) a Hamiltonian cycle in a hidden G(n, p) by revealing at most (1 + o(1))n edges.

Theorem (Feige, Gamarnik, Neeman, Rácz, Tetali '18) For any $\delta < 2$, there is an $\alpha < 2$ such that one cannot find (w.c.p.) a clique of order $\alpha \log_2 n$ in a hidden $G(n, \frac{1}{2})$ by revealing at most n^{δ} adjacencies using a constant number of rounds of adaptiveness.

Lemma

 $f(K_n, \frac{1}{2}) \leq \tilde{r}(n).$

Lemma

$$f(K_n, \frac{1}{2}) \leq \tilde{r}(n).$$

Proof.

By definition, Builder has a strategy that guarantees a win against a random Painter in $\tilde{r}(n)$ moves. In particular, this either this strategy builds a red K_n with probability $\frac{1}{2}$ or a blue K_n with probability $\frac{1}{2}$.

Lemma

$$f(K_n, \frac{1}{2}) \leq \tilde{r}(n).$$

Proof.

By definition, Builder has a strategy that guarantees a win against a random Painter in $\tilde{r}(n)$ moves. In particular, this either this strategy builds a red K_n with probability $\frac{1}{2}$ or a blue K_n with probability $\frac{1}{2}$.

Theorem (Conlon, Fox, Grinshpun, H. '19)

For any fixed n, as $p \rightarrow 0^+$,

$$p^{-(2-\sqrt{2})n+O(1)} \leq f(K_n,p) \leq p^{-\frac{2}{3}n-O(1)}.$$

Theorem (Conlon, Fox, Grinshpun, H. '19) As $p \rightarrow 0^+$,

$$\begin{array}{rcl} f(K_3,p) &=& \Theta(p^{-\frac{3}{2}}) \\ f(K_4,p) &=& \Theta(p^{-2}) \\ f(K_5,p) &=& \Theta(p^{-\frac{8}{3}}). \end{array}$$

Theorem (Conlon, Fox, Grinshpun, H. '19) As $p \rightarrow 0^+$,

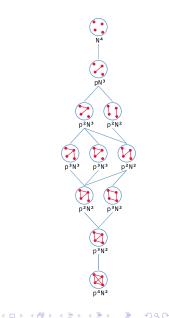
$$f(K_4,p)=\Theta(p^{-2}).$$

Theorem (Conlon, Fox, Grinshpun, H. '19) As $p \rightarrow 0^+$,

$$f(K_4,p)=\Theta(p^{-2}).$$

Proof of lower bound.

Define t(H, p, N) to be the maximum expected number of copies of H that can be bound in Nmoves. Recursively bound $t(K_4, p, N)$ in terms of its subgraphs. To build one copy of K_4 , one must build p^{-1} copies of $K_4 \setminus e$.

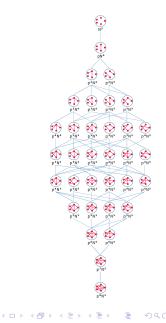


Theorem (Conlon, Fox, Grinshpun, H. '19) As $p \rightarrow 0^+$,

$$f(K_5,p)=\Theta(p^{-\frac{8}{3}}).$$

Proof of lower bound.

Define t(H, p, N) to be the maximum expected number of copies of H that can be bound in Nmoves. Recursively bound $t(K_4, p, N)$ in terms of its subgraphs. To build one copy of K_4 , one must build p^{-1} copies of $K_4 \setminus e$.



Off-diagonal online Ramsey numbers

Theorem (Ajtai, Komlos, Szemerédi '80, Kim '95) As $n \to \infty$,

$$r(3,n) = \Theta\left(\frac{n^2}{\log n}\right).$$

Off-diagonal online Ramsey numbers

Theorem (Ajtai, Komlos, Szemerédi '80, Kim '95) As $n \to \infty$,

$$r(3,n) = \Theta\left(\frac{n^2}{\log n}\right).$$

Theorem (Conlon, Fox, Grinshpun, H. '19) As $n \to \infty$, $\Omega\left(\frac{n^3}{(\log n)^2}\right) \le \tilde{r}(3, n) \le O(n^3).$

Off-diagonal online Ramsey numbers

Theorem (Ajtai, Komlos, Szemerédi '80, Kim '95) As $n \to \infty$,

$$r(3,n) = \Theta\left(\frac{n^2}{\log n}\right).$$

Theorem (Conlon, Fox, Grinshpun, H. '19)
As
$$n \to \infty$$
,
$$\Omega\left(\frac{n^3}{(\log n)^2}\right) \le \tilde{r}(3, n) \le O(n^3).$$

Theorem (Conlon, Fox, Grinshpun, H. '19) For any $m \ge 3$, as $n \to \infty$,

$$n^{(2-\sqrt{2})m-O(1)} \leq \tilde{r}(m,n) \leq O_m\Big(rac{n^m}{(\log n)^{\lfloor m/2
floor-1}}\Big).$$

Open Problems

Open problems

Conjecture For any fixed n, as $p \rightarrow 0^+$,

$$f(K_n, p) = p^{-\frac{2}{3}n+O(1)}.$$

Open problems

Conjecture For any fixed n, as $p \rightarrow 0^+$,

$$f(K_n, p) = p^{-\frac{2}{3}n+O(1)}.$$

(This would imply $\tilde{r}(n) \ge 2^{\frac{2}{3}n - O(1)}$ and $\tilde{r}(m, n) \ge n^{(1-o(1))\frac{2}{3}m}$.)

Open problems

Conjecture For any fixed n, as $p \rightarrow 0^+$,

$$f(K_n, p) = p^{-\frac{2}{3}n+O(1)}$$

(This would imply $\tilde{r}(n) \ge 2^{\frac{2}{3}n - O(1)}$ and $\tilde{r}(m, n) \ge n^{(1-o(1))\frac{2}{3}m}$.)

Conjecture

For every $d \ge 2$, there exists a d-degenerate graph H for which

$$f(H,p) = \Theta(p^{-d})$$

as $p \rightarrow 0^+$.