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Background



Ramsey numbers

Ramsey’s Theorem (infinitary version)

In any red-blue edge coloring of the infinite complete graph KN,
there exist arbitrarily large monochromatic cliques.

The main goal of graph Ramsey theory is to determine how much
of a hidden coloring of KN one must reveal to find a
monochromatic Kn.

Variants of (diagonal) Ramsey numbers

I The Ramsey number r(n) is the smallest N such that any
coloring of KN contains a monochromatic Kn.

I The size Ramsey number r̂(n) is the smallest number of edges
of KN one must reveal, all at once, to find a monochromatic
Kn.

I The online Ramsey number r̃(n) is the smallest number of
edges of KN one must reveal, one at a time, to find a
monochromatic Kn.
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Bounds on Ramsey numbers

Lower bounds
The best lower bounds on r(n) are all proved using the
probabilistic method.

I r(n) ≥ (1 + o(1)) n
e
√
2
· 2n/2 (Erdős ‘47).

I r(n) ≥ (1 + o(1))n
√
2

e · 2
n/2 (Spencer ‘75).

Upper bounds

The best upper bounds on r(n) are all proved using the
Erdős-Szekeres method.

I r(n) ≤
(2n−2
n−1

)
(Erdős-Szekeres ‘35).

I r(n) ≤ n−
C log n
log log n · 22n (Conlon ‘09).
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Online Ramsey numbers

Definition
The online Ramsey number r̃(n) is the smallest number of edges of
KN one must reveal, one at a time, to find a monochromatic Kn.

Alternatively, we imagine that you, the Builder, are building a
graph one edge at a time and an adversarial Painter paints your
edges red or blue. You want to build a monochromatic Kn as
quickly as possible.

Folklore bounds

2n/2 ≤ r(n)

2
≤ r̃(n) ≤ min

{
22n,

(
r(n)

2

)}
.
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Main result

Theorem (Conlon, Fox, Grinshpun, H. ‘19)

r̃(n) ≥ 2(2−
√
2)n−O(1) ≈ 20.586n.

Main Ideas

I Random painter.

I Method of conditional expectation.

I Restrict to sets with large matchings.
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Sketch of Proof

The Method of Conditional Expectation (Erdős-Selfridge ’73)

I For each n-set U ⊆ V (KN), define

w(U, t) :=

{
(12)(n2)−e(U) U is monochromatic red at time t

0 otherwise.

I Suppose Builder plays the game for a total of N timesteps.
We may pretend there are only 2N vertices.

I Define the total weight function

w(t) :=
∑

U⊆K2N

w(U, t).

This function is a martingale in t.
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I For each n-set U ⊆ V (KN), define

w(U, t) :=

{
(12)(n2)−e(U) U is monochromatic red at time t

0 otherwise.

I Suppose Builder plays the game for a total of N timesteps.
We may pretend there are only 2N vertices.

I Define the total weight function

w(t) :=
∑

U⊆K2N

w(U, t).

This function is a martingale in t.



Sketch of Proof

The Method of Conditional Expectation (Erdős-Selfridge ’73)

I The total weight function

w(t) =
∑

U⊆V (K2N)

w(U, t),

is an upper bound on the number of red Kn’s that Builder can
find.

I Thus, if E[w(N)] < 1
2 , then with positive probability Builder

has not found a monochromatic Kn in N moves.

I Since w is a martingale,

E[w(N)] = w(0) ≤ (2N)n ·
(1

2

)(n2)
.

I This proves that r̃(n) ≥ 2n/2.
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I The total weight function

w(t) =
∑

U⊆V (K2N)

w(U, t),

is an upper bound on the number of red Kn’s that Builder can
find.

I Thus, if E[w(N)] < 1
2 , then with positive probability Builder

has not found a monochromatic Kn in N moves.

I Since w is a martingale,

E[w(N)] = w(0) ≤ (2N)n ·
(1

2

)(n2)
.

I This proves that r̃(n) ≥ 2n/2.



Sketch of Proof

The Method of Conditional Expectation (Erdős-Selfridge ’73)
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Sketch of Proof

Theorem (Alon ‘81)

If H is a graph with n vertices which contains a k-matching, and G
has N edges, then the number of copies of H in G is O(Nn−k).

Sets with large matchings

I Thus, the number of n-sets U is about (2N)n, but the number
of n-sets U containing a k-matching is O(Nn−k).

I We define the restricted weight function

wk(t) :=
∑

U has a k-matching

w(U, t).

I It is possible to show by induction on k, N, and n that

E[wk(N)] ≤ (2N)n−k(12)(n2)−k(k−1).
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I This implies that for any k ≤ n/2,

r̃(n) ≥ 2
(n2)−k(k−1)

n−k
−O(1).

I Optimizing k = (1− 1√
2

)n completes the proof that

r̃(n) ≥ 2(2−
√
2)n−O(1).
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The Subgraph Query Problem

Definition
Suppose we are given a finite graph H and want to find a copy of
H in a hidden infinite random graph G (N, p), p ∈ (0, 1). Let
f (H, p) be the number of adjacencies one must reveal, one at a
time, to find a copy of H with probability 1

2 .

Related work:

Theorem (Ferber, Krivelevich, Sudakov, Vieira ‘16)

Whenever p > log n+log log n+ω(1)
n , one can find (w.h.p.) a

Hamiltonian cycle in a hidden G (n, p) by revealing at most
(1 + o(1))n edges.

Theorem (Feige, Gamarnik, Neeman, Rácz, Tetali ‘18)

For any δ < 2, there is an α < 2 such that one cannot find (w.c.p.)
a clique of order α log2 n in a hidden G (n, 12) by revealing at most
nδ adjacencies using a constant number of rounds of adaptiveness.
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The Subgraph Query Problem

Lemma

f (Kn,
1
2) ≤ r̃(n).

Proof.
By definition, Builder has a strategy that guarantees a win against
a random Painter in r̃(n) moves. In particular, this either this
strategy builds a red Kn with probability 1

2 or a blue Kn with
probability 1

2 .

Theorem (Conlon, Fox, Grinshpun, H. ’19)

For any fixed n, as p → 0+,

p−(2−
√
2)n+O(1) ≤ f (Kn, p) ≤ p−

2
3
n−O(1).
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f (K4, p) = Θ(p−2)

f (K5, p) = Θ(p−
8
3 ).
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As p → 0+,

f (K4, p) = Θ(p−2).

Proof of lower bound.
Define t(H, p,N) to be the maximum expected
number of copies of H that can be bound in N
moves. Recursively bound t(K4, p,N) in terms
of its subgraphs. To build one copy of K4, one
must build p−1 copies of K4 \ e.
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Off-diagonal online Ramsey numbers

Theorem (Ajtai, Komlos, Szemerédi ’80, Kim ’95)

As n→∞,

r(3, n) = Θ
( n2

log n

)
.

Theorem (Conlon, Fox, Grinshpun, H. ’19)

As n→∞,

Ω
( n3

(log n)2

)
≤ r̃(3, n) ≤ O(n3).

Theorem (Conlon, Fox, Grinshpun, H. ’19)

For any m ≥ 3, as n→∞,

n(2−
√
2)m−O(1) ≤ r̃(m, n) ≤ Om

( nm

(log n)bm/2c−1

)
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Open problems

Conjecture

For any fixed n, as p → 0+,

f (Kn, p) = p−
2
3
n+O(1).

(This would imply r̃(n) ≥ 2
2
3
n−O(1) and r̃(m, n) ≥ n(1−o(1))

2
3
m.)

Conjecture

For every d ≥ 2, there exists a d-degenerate graph H for which

f (H, p) = Θ(p−d)

as p → 0+.
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