Lower bounds for online Ramsey numbers

Xiaoyu He

Joint work with David Conlon, Jacob Fox, and Andrey Grinshpun

Random Structures \& Algorithms 2019

Background

Ramsey numbers

Ramsey's Theorem (infinitary version)
In any red-blue edge coloring of the infinite complete graph $K_{\mathbb{N}}$, there exist arbitrarily large monochromatic cliques.

Ramsey numbers

Ramsey's Theorem (infinitary version)
In any red-blue edge coloring of the infinite complete graph $K_{\mathbb{N}}$, there exist arbitrarily large monochromatic cliques.
The main goal of graph Ramsey theory is to determine how much of a hidden coloring of $K_{\mathbb{N}}$ one must reveal to find a monochromatic K_{n}.

Ramsey numbers

Ramsey's Theorem (infinitary version)
In any red-blue edge coloring of the infinite complete graph $K_{\mathbb{N}}$, there exist arbitrarily large monochromatic cliques.
The main goal of graph Ramsey theory is to determine how much of a hidden coloring of $K_{\mathbb{N}}$ one must reveal to find a monochromatic K_{n}.
Variants of (diagonal) Ramsey numbers

- The Ramsey number $r(n)$ is the smallest N such that any coloring of K_{N} contains a monochromatic K_{n}.

Ramsey numbers

Ramsey's Theorem (infinitary version)

In any red-blue edge coloring of the infinite complete graph $K_{\mathbb{N}}$, there exist arbitrarily large monochromatic cliques.
The main goal of graph Ramsey theory is to determine how much of a hidden coloring of $K_{\mathbb{N}}$ one must reveal to find a monochromatic K_{n}.

Variants of (diagonal) Ramsey numbers

- The Ramsey number $r(n)$ is the smallest N such that any coloring of K_{N} contains a monochromatic K_{n}.
- The size Ramsey number $\hat{r}(n)$ is the smallest number of edges of $K_{\mathbb{N}}$ one must reveal, all at once, to find a monochromatic K_{n}.

Ramsey numbers

Ramsey's Theorem (infinitary version)

In any red-blue edge coloring of the infinite complete graph $K_{\mathbb{N}}$, there exist arbitrarily large monochromatic cliques.
The main goal of graph Ramsey theory is to determine how much of a hidden coloring of $K_{\mathbb{N}}$ one must reveal to find a monochromatic K_{n}.

Variants of (diagonal) Ramsey numbers

- The Ramsey number $r(n)$ is the smallest N such that any coloring of K_{N} contains a monochromatic K_{n}.
- The size Ramsey number $\hat{r}(n)$ is the smallest number of edges of $K_{\mathbb{N}}$ one must reveal, all at once, to find a monochromatic K_{n}.
- The online Ramsey number $\tilde{r}(n)$ is the smallest number of edges of $K_{\mathbb{N}}$ one must reveal, one at a time, to find a monochromatic K_{n}.

Bounds on Ramsey numbers

Lower bounds
The best lower bounds on $r(n)$ are all proved using the probabilistic method.

Bounds on Ramsey numbers

Lower bounds

The best lower bounds on $r(n)$ are all proved using the probabilistic method.

- $r(n) \geq(1+o(1)) \frac{n}{e \sqrt{2}} \cdot 2^{n / 2}$ (Erdős ‘47).
- $r(n) \geq(1+o(1)) \frac{n \sqrt{2}}{e} \cdot 2^{n / 2}$ (Spencer '75).

Bounds on Ramsey numbers

Lower bounds
The best lower bounds on $r(n)$ are all proved using the probabilistic method.

- $r(n) \geq(1+o(1)) \frac{n}{e \sqrt{2}} \cdot 2^{n / 2}$ (Erdős ‘47).
- $r(n) \geq(1+o(1)) \frac{n \sqrt{2}}{e} \cdot 2^{n / 2}$ (Spencer '75).

Upper bounds

The best upper bounds on $r(n)$ are all proved using the Erdős-Szekeres method.

Bounds on Ramsey numbers

Lower bounds

The best lower bounds on $r(n)$ are all proved using the probabilistic method.

- $r(n) \geq(1+o(1)) \frac{n}{e \sqrt{2}} \cdot 2^{n / 2}$ (Erdős ‘47).
- $r(n) \geq(1+o(1)) \frac{n \sqrt{2}}{e} \cdot 2^{n / 2}$ (Spencer '75).

Upper bounds

The best upper bounds on $r(n)$ are all proved using the Erdős-Szekeres method.

- $r(n) \leq\binom{ 2 n-2}{n-1}$ (Erdős-Szekeres '35).
- $r(n) \leq n^{-\frac{c \log n}{\log \log n}} \cdot 2^{2 n}$ (Conlon '09).

Online Ramsey numbers

Definition
The online Ramsey number $\tilde{r}(n)$ is the smallest number of edges of $K_{\mathbb{N}}$ one must reveal, one at a time, to find a monochromatic K_{n}.

Online Ramsey numbers

Definition

The online Ramsey number $\tilde{r}(n)$ is the smallest number of edges of $K_{\mathbb{N}}$ one must reveal, one at a time, to find a monochromatic K_{n}. Alternatively, we imagine that you, the Builder, are building a graph one edge at a time and an adversarial Painter paints your edges red or blue. You want to build a monochromatic K_{n} as quickly as possible.

Online Ramsey numbers

Definition

The online Ramsey number $\tilde{r}(n)$ is the smallest number of edges of $K_{\mathbb{N}}$ one must reveal, one at a time, to find a monochromatic K_{n}. Alternatively, we imagine that you, the Builder, are building a graph one edge at a time and an adversarial Painter paints your edges red or blue. You want to build a monochromatic K_{n} as quickly as possible.

Folklore bounds

$$
2^{n / 2} \leq \frac{r(n)}{2} \leq \tilde{r}(n) \leq \min \left\{2^{2 n},\binom{r(n)}{2}\right\}
$$

Online Ramsey numbers

Folklore bounds

$$
2^{n / 2} \leq \frac{r(n)}{2} \leq \tilde{r}(n) \leq \min \left\{2^{2 n},\binom{r(n)}{2}\right\} .
$$

Online Ramsey numbers

Folklore bounds

$$
2^{n / 2} \leq \frac{r(n)}{2} \leq \tilde{r}(n) \leq \min \left\{2^{2 n},\binom{r(n)}{2}\right\} .
$$

Theorem (Conlon '09)
There exists $0<c<1$ such that for infinitely many n,

$$
\tilde{r}(n) \leq c^{n}\binom{r(n)}{2}
$$

Main results

Main result

Theorem (Conlon, Fox, Grinshpun, H. '19)

$$
\tilde{r}(n) \geq 2^{(2-\sqrt{2}) n-O(1)} \approx 2^{0.586 n}
$$

Main result

Theorem (Conlon, Fox, Grinshpun, H. '19)

$$
\tilde{r}(n) \geq 2^{(2-\sqrt{2}) n-O(1)} \approx 2^{0.586 n}
$$

Main Ideas

- Random painter.

Main result

Theorem (Conlon, Fox, Grinshpun, H. '19)

$$
\tilde{r}(n) \geq 2^{(2-\sqrt{2}) n-O(1)} \approx 2^{0.586 n}
$$

Main Ideas

- Random painter.
- Method of conditional expectation.

Main result

Theorem (Conlon, Fox, Grinshpun, H. '19)

$$
\tilde{r}(n) \geq 2^{(2-\sqrt{2}) n-O(1)} \approx 2^{0.586 n}
$$

Main Ideas

- Random painter.
- Method of conditional expectation.
- Restrict to sets with large matchings.

Sketch of Proof

The Method of Conditional Expectation (Erdős-Selfridge '73)

- For each n-set $U \subseteq V\left(K_{\mathbb{N}}\right)$, define

$$
w(U, t):= \begin{cases}\left.\left(\frac{1}{2}\right)\right)^{\binom{n}{2}-e(U)} & U \text { is monochromatic red at time } t \\ 0 & \text { otherwise } .\end{cases}
$$

Sketch of Proof

The Method of Conditional Expectation (Erdős-Selfridge '73)

- For each n-set $U \subseteq V\left(K_{\mathbb{N}}\right)$, define

$$
w(U, t):= \begin{cases}\left(\frac{1}{2}\right)^{\binom{n}{2}-e(U)} & U \text { is monochromatic red at time } t \\ 0 & \text { otherwise } .\end{cases}
$$

- Suppose Builder plays the game for a total of N timesteps. We may pretend there are only 2 N vertices.

Sketch of Proof

The Method of Conditional Expectation (Erdős-Selfridge '73)

- For each n-set $U \subseteq V\left(K_{\mathbb{N}}\right)$, define

$$
w(U, t):= \begin{cases}\left(\frac{1}{2}\right)^{\binom{n}{2}-e(U)} & U \text { is monochromatic red at time } t \\ 0 & \text { otherwise. }\end{cases}
$$

- Suppose Builder plays the game for a total of N timesteps. We may pretend there are only 2 N vertices.
- Define the total weight function

$$
w(t):=\sum_{U \subseteq K_{2 N}} w(U, t)
$$

This function is a martingale in t.

Sketch of Proof

The Method of Conditional Expectation (Erdős-Selfridge '73)

- The total weight function

$$
w(t)=\sum_{U \subseteq V\left(K_{2 N}\right)} w(U, t)
$$

is an upper bound on the number of red K_{n} 's that Builder can find.

Sketch of Proof

The Method of Conditional Expectation (Erdős-Selfridge '73)

- The total weight function

$$
w(t)=\sum_{U \subseteq V\left(K_{2 N}\right)} w(U, t)
$$

is an upper bound on the number of red K_{n} 's that Builder can find.

- Thus, if $\mathbb{E}[w(N)]<\frac{1}{2}$, then with positive probability Builder has not found a monochromatic K_{n} in N moves.

Sketch of Proof

The Method of Conditional Expectation (Erdős-Selfridge '73)

- The total weight function

$$
w(t)=\sum_{U \subseteq V\left(K_{2 N}\right)} w(U, t)
$$

is an upper bound on the number of red K_{n} 's that Builder can find.

- Thus, if $\mathbb{E}[w(N)]<\frac{1}{2}$, then with positive probability Builder has not found a monochromatic K_{n} in N moves.
- Since w is a martingale,

$$
\mathbb{E}[w(N)]=w(0) \leq(2 N)^{n} \cdot\left(\frac{1}{2}\right)^{\binom{n}{2}}
$$

Sketch of Proof

The Method of Conditional Expectation (Erdős-Selfridge '73)

- The total weight function

$$
w(t)=\sum_{U \subseteq V\left(K_{2 N}\right)} w(U, t)
$$

is an upper bound on the number of red K_{n} 's that Builder can find.

- Thus, if $\mathbb{E}[w(N)]<\frac{1}{2}$, then with positive probability Builder has not found a monochromatic K_{n} in N moves.
- Since w is a martingale,

$$
\mathbb{E}[w(N)]=w(0) \leq(2 N)^{n} \cdot\left(\frac{1}{2}\right)^{\binom{n}{2}}
$$

- This proves that $\tilde{r}(n) \geq 2^{n / 2}$.

Sketch of Proof

Theorem (Alon '81)
If H is a graph with n vertices which contains a k-matching, and G has N edges, then the number of copies of H in G is $O\left(N^{n-k}\right)$.

Sketch of Proof

Theorem (Alon "81)
If H is a graph with n vertices which contains a k-matching, and G has N edges, then the number of copies of H in G is $O\left(N^{n-k}\right)$.

Sets with large matchings

- Thus, the number of n-sets U is about $(2 N)^{n}$, but the number of n-sets U containing a k-matching is $O\left(N^{n-k}\right)$.

Sketch of Proof

Theorem (Alon '81)
If H is a graph with n vertices which contains a k-matching, and G has N edges, then the number of copies of H in G is $O\left(N^{n-k}\right)$.

Sets with large matchings

- Thus, the number of n-sets U is about $(2 N)^{n}$, but the number of n-sets U containing a k-matching is $O\left(N^{n-k}\right)$.
- We define the restricted weight function

$$
w_{k}(t):=\sum_{U \text { has a } k \text {-matching }} w(U, t)
$$

Sketch of Proof

Theorem (Alon '81)
If H is a graph with n vertices which contains a k-matching, and G has N edges, then the number of copies of H in G is $O\left(N^{n-k}\right)$.

Sets with large matchings

- Thus, the number of n-sets U is about $(2 N)^{n}$, but the number of n-sets U containing a k-matching is $O\left(N^{n-k}\right)$.
- We define the restricted weight function

$$
w_{k}(t):=\sum_{U \text { has a } k \text {-matching }} w(U, t)
$$

- It is possible to show by induction on k, N, and n that

$$
\mathbb{E}\left[w_{k}(N)\right] \leq(2 N)^{n-k}\left(\frac{1}{2}\right)^{\binom{n}{2}-k(k-1)} .
$$

Sketch of Proof

Sets with large matchings

- It is possible to show by induction on k, N, and n that

$$
\mathbb{E}\left[w_{k}(N)\right] \leq(2 N)^{n-k}\left(\frac{1}{2}\right)^{\binom{n}{2}-k(k-1)} .
$$

Sketch of Proof

Sets with large matchings

- It is possible to show by induction on k, N, and n that

$$
\mathbb{E}\left[w_{k}(N)\right] \leq(2 N)^{n-k}\left(\frac{1}{2}\right)^{\binom{n}{2}-k(k-1)} .
$$

- This implies that for any $k \leq n / 2$,

$$
\tilde{r}(n) \geq 2^{\frac{\binom{n}{2}-k(k-1)}{n-k}-O(1)} .
$$

Sketch of Proof

Sets with large matchings

- It is possible to show by induction on k, N, and n that

$$
\mathbb{E}\left[w_{k}(N)\right] \leq(2 N)^{n-k}\left(\frac{1}{2}\right)^{\binom{n}{2}-k(k-1)} .
$$

- This implies that for any $k \leq n / 2$,

$$
\tilde{r}(n) \geq 2^{\frac{\binom{n}{2}-k(k-1)}{n-k}-O(1)} .
$$

- Optimizing $k=\left(1-\frac{1}{\sqrt{2}}\right) n$ completes the proof that

$$
\tilde{r}(n) \geq 2^{(2-\sqrt{2}) n-O(1)}
$$

The Subgraph Query Problem

Definition

Suppose we are given a finite graph H and want to find a copy of H in a hidden infinite random graph $G(\mathbb{N}, p), p \in(0,1)$. Let $f(H, p)$ be the number of adjacencies one must reveal, one at a time, to find a copy of H with probability $\frac{1}{2}$.

The Subgraph Query Problem

Definition

Suppose we are given a finite graph H and want to find a copy of H in a hidden infinite random graph $G(\mathbb{N}, p), p \in(0,1)$. Let $f(H, p)$ be the number of adjacencies one must reveal, one at a time, to find a copy of H with probability $\frac{1}{2}$.
Related work:

The Subgraph Query Problem

Definition

Suppose we are given a finite graph H and want to find a copy of H in a hidden infinite random graph $G(\mathbb{N}, p), p \in(0,1)$. Let $f(H, p)$ be the number of adjacencies one must reveal, one at a time, to find a copy of H with probability $\frac{1}{2}$.
Related work:
Theorem (Ferber, Krivelevich, Sudakov, Vieira '16) Whenever $p>\frac{\log n+\log \log n+\omega(1)}{n}$, one can find (w.h.p.) a Hamiltonian cycle in a hidden $G(n, p)$ by revealing at most $(1+o(1)) n$ edges.

The Subgraph Query Problem

Definition

Suppose we are given a finite graph H and want to find a copy of H in a hidden infinite random graph $G(\mathbb{N}, p), p \in(0,1)$. Let $f(H, p)$ be the number of adjacencies one must reveal, one at a time, to find a copy of H with probability $\frac{1}{2}$.
Related work:
Theorem (Ferber, Krivelevich, Sudakov, Vieira '16) Whenever $p>\frac{\log n+\log \log n+\omega(1)}{n}$, one can find (w.h.p.) a Hamiltonian cycle in a hidden $G(n, p)$ by revealing at most $(1+o(1)) n$ edges.

Theorem (Feige, Gamarnik, Neeman, Rácz, Tetali '18)
For any $\delta<2$, there is an $\alpha<2$ such that one cannot find (w.c.p.) a clique of order $\alpha \log _{2} n$ in a hidden $G\left(n, \frac{1}{2}\right)$ by revealing at most n^{δ} adjacencies using a constant number of rounds of adaptiveness.

The Subgraph Query Problem

Lemma

$$
f\left(K_{n}, \frac{1}{2}\right) \leq \tilde{r}(n) .
$$

The Subgraph Query Problem

Lemma

$$
f\left(K_{n}, \frac{1}{2}\right) \leq \tilde{r}(n)
$$

Proof.
By definition, Builder has a strategy that guarantees a win against a random Painter in $\tilde{r}(n)$ moves. In particular, this either this strategy builds a red K_{n} with probability $\frac{1}{2}$ or a blue K_{n} with probability $\frac{1}{2}$.

The Subgraph Query Problem

Lemma

$$
f\left(K_{n}, \frac{1}{2}\right) \leq \tilde{r}(n)
$$

Proof.
By definition, Builder has a strategy that guarantees a win against a random Painter in $\tilde{r}(n)$ moves. In particular, this either this strategy builds a red K_{n} with probability $\frac{1}{2}$ or a blue K_{n} with probability $\frac{1}{2}$.

Theorem (Conlon, Fox, Grinshpun, H. '19)
For any fixed n, as $p \rightarrow 0^{+}$,

$$
p^{-(2-\sqrt{2}) n+O(1)} \leq f\left(K_{n}, p\right) \leq p^{-\frac{2}{3} n-O(1)}
$$

The Subgraph Query Problem

Theorem (Conlon, Fox, Grinshpun, H. '19)
As $p \rightarrow 0^{+}$,

$$
\begin{aligned}
& f\left(K_{3}, p\right)=\Theta\left(p^{-\frac{3}{2}}\right) \\
& f\left(K_{4}, p\right)=\Theta\left(p^{-2}\right) \\
& f\left(K_{5}, p\right)=\Theta\left(p^{-\frac{8}{3}}\right) .
\end{aligned}
$$

The Subgraph Query Problem

Theorem (Conlon, Fox, Grinshpun, H. '19)
As $p \rightarrow 0^{+}$,

$$
f\left(K_{4}, p\right)=\Theta\left(p^{-2}\right)
$$

The Subgraph Query Problem

Theorem (Conlon, Fox, Grinshpun, H. '19)
As $p \rightarrow 0^{+}$,

$$
f\left(K_{4}, p\right)=\Theta\left(p^{-2}\right)
$$

Proof of lower bound. Define $t(H, p, N)$ to be the maximum expected number of copies of H that can be bound in N moves. Recursively bound $t\left(K_{4}, p, N\right)$ in terms of its subgraphs. To build one copy of K_{4}, one must build p^{-1} copies of $K_{4} \backslash e$.

The Subgraph Query Problem

Theorem (Conlon, Fox, Grinshpun, H. '19)
As $p \rightarrow 0^{+}$,

$$
f\left(K_{5}, p\right)=\Theta\left(p^{-\frac{8}{3}}\right)
$$

Proof of lower bound.
Define $t(H, p, N)$ to be the maximum expected number of copies of H that can be bound in N moves. Recursively bound $t\left(K_{4}, p, N\right)$ in terms of its subgraphs. To build one copy of K_{4}, one must build p^{-1} copies of $K_{4} \backslash e$.

Off-diagonal online Ramsey numbers

Theorem (Ajtai, Komlos, Szemerédi '80, Kim '95)
As $n \rightarrow \infty$,

$$
r(3, n)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Off-diagonal online Ramsey numbers

Theorem (Ajtai, Komlos, Szemerédi '80, Kim '95) As $n \rightarrow \infty$,

$$
r(3, n)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Theorem (Conlon, Fox, Grinshpun, H. '19)
As $n \rightarrow \infty$,

$$
\Omega\left(\frac{n^{3}}{(\log n)^{2}}\right) \leq \tilde{r}(3, n) \leq O\left(n^{3}\right)
$$

Off-diagonal online Ramsey numbers

Theorem (Ajtai, Komlos, Szemerédi '80, Kim '95) As $n \rightarrow \infty$,

$$
r(3, n)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Theorem (Conlon, Fox, Grinshpun, H. '19)
As $n \rightarrow \infty$,

$$
\Omega\left(\frac{n^{3}}{(\log n)^{2}}\right) \leq \tilde{r}(3, n) \leq O\left(n^{3}\right)
$$

Theorem (Conlon, Fox, Grinshpun, H. '19)
For any $m \geq 3$, as $n \rightarrow \infty$,

$$
n^{(2-\sqrt{2}) m-O(1)} \leq \tilde{r}(m, n) \leq O_{m}\left(\frac{n^{m}}{(\log n)^{\lfloor m / 2\rfloor-1}}\right)
$$

Open Problems

Open problems

Conjecture
For any fixed n, as $p \rightarrow 0^{+}$,

$$
f\left(K_{n}, p\right)=p^{-\frac{2}{3} n+O(1)}
$$

Open problems

Conjecture
For any fixed n, as $p \rightarrow 0^{+}$,

$$
f\left(K_{n}, p\right)=p^{-\frac{2}{3} n+O(1)}
$$

(This would imply $\tilde{r}(n) \geq 2^{\frac{2}{3} n-O(1)}$ and $\tilde{r}(m, n) \geq n^{(1-o(1)) \frac{2}{3} m}$.)

Open problems

Conjecture
For any fixed n, as $p \rightarrow 0^{+}$,

$$
f\left(K_{n}, p\right)=p^{-\frac{2}{3} n+O(1)}
$$

(This would imply $\tilde{r}(n) \geq 2^{\frac{2}{3} n-O(1)}$ and $\tilde{r}(m, n) \geq n^{(1-o(1)) \frac{2}{3} m}$.)
Conjecture
For every $d \geq 2$, there exists a d-degenerate graph H for which

$$
f(H, p)=\Theta\left(p^{-d}\right)
$$

as $p \rightarrow 0^{+}$.

