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Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Proof: Take a median ordering of a tournament,
which orders the vertices to maximize the number
of forward edges.

Definition
The (oriented) Ramsey number ~r(H) of a digraph H is the minimum N
such that every N-vertex tournament contains a copy of H.

Rédei’s theorem is equivalent to ~r(Pn) = n, where Pn is the oriented path
on n vertices.
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Undirected Ramsey numbers

Definition
The Ramsey number ~r(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Theorem (Erdős–Szekeres 1935, Erdős 1947)

2n/2 ≤ r(Kn) ≤ 22n

• The upper bound implies that r(H) exists for all H (Ramsey 1930).
• In general, r(H) can be exponential in n, but if H is a tree or cycle,

then r(H) = O(n).
• Burr–Erdős (1975): Is r(H) linear in n for all sparse graphs H?
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The Burr–Erdős conjecture

Burr–Erdős (1975): Is r(H) linear in n for all sparse graphs H?

Theorem (Chvátal–Rödl–Szemerédi–Trotter 1983)
If H has n vertices and maximum degree ∆, then r(H) = O∆(n).

A weaker notion of sparsity is degeneracy. The degeneracy of H is

d := max
H′⊆H

(mindeg(H′)).

If H is d-degenerate, then r(H) ≥ 2d/2, so graphs of high degeneracy have
large Ramsey numbers.

Conjecture (Burr–Erdős 1975)

, Theorem (Lee 2017)

If H is d-degenerate, then r(H) = Od(n).

Upshot: H has linear Ramsey number “if and only if” H is sparse.
Qualitatively, n and d control r(H).
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Ramsey numbers of digraphs

Definition
The Ramsey number ~r(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Observation: A transitive tournament contains only acyclic digraphs.
So ~r(H) = ∞ unless H is acyclic.

Theorem (Stearns 1959, Erdős–Moser 1964)
If −→Tn denotes the transitive tournament on n vertices, then

2n/2−1 ≤~r(−→Tn) ≤ 2n−1.

• The upper bound implies that ~r(H) exists for all acyclic H. Like the
undirected Ramsey number, ~r(H) can be exponential in n.

• Is the analogue of the Burr-Erdős conjecture true for digraphs?
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Is ~r(H) = O(n) for sparse H?

Main Question (Bucić–Letzter–Sudakov 2019)
Is ~r(H) = O(n) for all bounded-degree H?

Conjecture (Sumner 1971)
If H is some orientation of an n-vertex tree, then ~r(H) ≤ 2n − 2.

Progress on Sumner’s conjecture
• Häggkvist–Thomason (1991): ~r(H) ≤ 12n.
• Kühn–Mycroft–Osthus (2011): ~r(H) ≤ 2n − 2 for n large enough.
• Dross–Havet (2019): ~r(H) ≤ 21

8 n − 47
16 .

What about other sparse digraphs H?
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Is ~r(H) = O(n) for sparse H?

Main Question (Bucić–Letzter–Sudakov 2019)
Is ~r(H) = O(n) for all bounded-degree H?

Theorem (Thomason 1986)
If H is any acyclic orientation of Cn, then ~r(H) = n for n large enough.

Define the bandwidth of an acyclic digraph H to be the minimum k such
that H can be ordered v1, . . . , vn so that edges vi → vj exist only if
1 ≤ j − i ≤ k.

Theorem (DDFGHKLMSS 2020)
If H has bandwidth k, then ~r(H) = Ok(n).
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Our Results

Theorem (Fox–H.–Wigderson 2021)
For all C > 0 and n large enough, there is an n-vertex acyclic digraph H
with maximum degree ∆ ≤ C3/2+o(1) satisfying ~r(H) > nC.

Theorem (Fox–H.–Wigderson 2021)
Let H be an n-vertex acyclic digraph with maximum degree ∆.

• In general, ~r(H) ≤ nO∆(log n).
• If H is chosen randomly, then ~r(H) ≤ n · (log n)O∆(1).
• If H has height h, then ~r(H) = O∆,h(n).

Outline of Talk

1. Proof of lower bound ~r(H) > nlog2(3)−o(1).
2. Proof of the height upper bound: greedy embedding.
3. Results on multicolor Ramsey numbers.
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Lower bound proof

Theorem
There exists an n-vertex acyclic digraph H with maximum degree 1000
and ~r(H) > nlog2(3)−o(1).

Let T be an iterated blowup of a
cyclic triangle on N vertices:

Key Idea: We will construct H on [n] so that in any embedding H ↪→ T,
some subinterval of [n] of length 0.49n maps to a single third of T.

We ensure that induced subgraphs of H on subintervals inherit this
property, so we can iterate. After t iterations, we find a subinterval of H
of length (0.49)tn that maps to a single part of T of size 3−tN.
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Lower bound proof: interval meshes
Want: In any embedding H ↪→ T, some subinterval of [n] of length
0.49n is mapped into a single part, and this property is hereditary.

Definition
A digraph H on [n] is an interval mesh if edges point forward and:
For all 0 ≤ a < b ≤ c < d ≤ n with c − b ≤ 100 min(b − a, d − c), there
is an edge from (a, b] to (c, d].

J1 J2 J3 J4 J5 J6

Thus, |Ji| > 100 min(|Ji−1|, |Ji+1|). So |Ji| is unimodal and
maxi |Ji| ≥ 0.49n.

We can greedily construct interval meshes on [n] with max degree 1000.
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Upper bound proof: greedy embedding

Theorem
If H has n vertices, max degree ∆, and height h, then ~r(H) = O∆,h(n).

Lemma
If T is H-free, then T contains two large vertex sets with most edges
between them oriented the same way.

H
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If T is H-free, then T contains two large vertex sets with most edges
between them oriented the same way.

Iterating the lemma log h times, we find h sets in T with most edges
oriented forwards:

It is easy to embed H into these sets greedily.
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What about more than one color?

Definition
If k ≥ 1, the k-color Ramsey number −→rk (H) of a digraph H is the
minimum N such that any k-edge-colored N-vertex tournament contains
a monochromatic copy of H.

We showed: For k = 1, if H has n vertices and maximum degree ∆,
then −→r1 (H) ≤ nO∆(log n), but −→r1 (H) ≥ nC is possible for any C > 0.

Theorem (Fox–H.–Wigderson 2021)
If H has n vertices and maximum degree ∆, then

−→rk (H) ≤ nO∆(logOk(1) n).

For k ≥ 2, there exists H of maximum degree 3 and
−→rk (H) ≥ nΩ(log n/ log log n).

Proof compares digraph Ramsey numbers to ordered Ramsey numbers.
Conlon–Fox–Lee–Sudakov and Balko–Cibulka–Král–Kynčl proved that
random ordered matchings have large ordered Ramsey numbers.
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Open questions

Let H have n vertices and maximum degree ∆.

Conjecture.
For any C > 0, there exist H with ∆ independent of C for which
~r(H) ≥ nC.

Conjecture.
For a random H, ~r(H) = O∆(n) almost surely.

Question.
We know that ~r(H) = O(n) if H has bounded height or bounded
bandwidth. Is there a single natural notion of “multiscale complexity”
that captures both these parameters and implies ~r(H) = O(n)?
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Thank you!


