Ramsey numbers of sparse digraphs

Xiaoyu He (Stanford) Joint with Jacob Fox and Yuval Wigderson

March 9, 2021

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Proof: Take a *median ordering* of a tournament, which orders the vertices to maximize the number of forward edges.

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Proof: Take a *median ordering* of a tournament, which orders the vertices to maximize the number of forward edges.

Definition

The (oriented) Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Proof: Take a *median ordering* of a tournament, which orders the vertices to maximize the number of forward edges.

Definition

The (oriented) Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Rédei's theorem is equivalent to $\vec{r}(P_n) = n$, where P_n is the oriented path on *n* vertices.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every N-vertex two-edge-colored complete graph contains a monochromatic copy of H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every N-vertex two-edge-colored complete graph contains a monochromatic copy of H.

Theorem (Erdős–Szekeres 1935, Erdős 1947)

 $2^{n/2} \leq r(K_n) \leq 2^{2n}$

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every N-vertex two-edge-colored complete graph contains a monochromatic copy of H.

Theorem (Erdős–Szekeres 1935, Erdős 1947)

$$2^{n/2} \leq r(K_n) \leq 2^{2n}$$

• The upper bound implies that r(H) exists for all H (Ramsey 1930).

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every N-vertex two-edge-colored complete graph contains a monochromatic copy of H.

Theorem (Erdős–Szekeres 1935, Erdős 1947)

$$2^{n/2} \leq r(K_n) \leq 2^{2n}$$

- The upper bound implies that r(H) exists for all H (Ramsey 1930).
- In general, r(H) can be exponential in n, but if H is a tree or cycle, then r(H) = O(n).

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every N-vertex two-edge-colored complete graph contains a monochromatic copy of H.

Theorem (Erdős–Szekeres 1935, Erdős 1947)

$$2^{n/2} \leq r(K_n) \leq 2^{2n}$$

- The upper bound implies that r(H) exists for all H (Ramsey 1930).
- In general, r(H) can be exponential in n, but if H is a tree or cycle, then r(H) = O(n).
- Burr-Erdős (1975): Is r(H) linear in *n* for all sparse graphs *H*?

Burr-Erdős (1975): Is r(H) linear in *n* for all sparse graphs *H*?

Theorem (Chvátal–Rödl–Szemerédi–Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

Burr–Erdős (1975): Is r(H) linear in n for all sparse graphs H? Theorem (Chvátal–Rödl–Szemerédi–Trotter 1983) If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A weaker notion of sparsity is degeneracy. The degeneracy of H is

$$d := \max_{H' \subseteq H} (\operatorname{mindeg}(H')).$$

Burr–Erdős (1975): Is r(H) linear in n for all sparse graphs H? Theorem (Chvátal–Rödl–Szemerédi–Trotter 1983) If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A weaker notion of sparsity is degeneracy. The degeneracy of H is

 $d := \max_{H' \subseteq H} (\operatorname{mindeg}(H')).$

If *H* is *d*-degenerate, then $r(H) \ge 2^{d/2}$, so graphs of high degeneracy have large Ramsey numbers.

Burr–Erdős (1975): Is r(H) linear in n for all sparse graphs H? Theorem (Chvátal–Rödl–Szemerédi–Trotter 1983) If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A weaker notion of sparsity is degeneracy. The degeneracy of H is

 $d := \max_{H' \subseteq H} (\operatorname{mindeg}(H')).$

If *H* is *d*-degenerate, then $r(H) \ge 2^{d/2}$, so graphs of high degeneracy have large Ramsey numbers.

Conjecture (Burr–Erdős 1975)

If H is d-degenerate, then $r(H) = O_d(n)$.

Burr–Erdős (1975): Is r(H) linear in n for all sparse graphs H? Theorem (Chvátal–Rödl–Szemerédi–Trotter 1983) If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A weaker notion of sparsity is degeneracy. The degeneracy of H is

 $d := \max_{H' \subseteq H} (\operatorname{mindeg}(H')).$

If *H* is *d*-degenerate, then $r(H) \ge 2^{d/2}$, so graphs of high degeneracy have large Ramsey numbers.

Conjecture (Burr–Erdős 1975), Theorem (Lee 2017) If H is d-degenerate, then $r(H) = O_d(n)$.

Burr–Erdős (1975): Is r(H) linear in n for all sparse graphs H? Theorem (Chvátal–Rödl–Szemerédi–Trotter 1983) If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A weaker notion of sparsity is degeneracy. The degeneracy of H is

 $d := \max_{H' \subseteq H} (\operatorname{mindeg}(H')).$

If *H* is *d*-degenerate, then $r(H) \ge 2^{d/2}$, so graphs of high degeneracy have large Ramsey numbers.

Conjecture (Burr–Erdős 1975), Theorem (Lee 2017) If H is d-degenerate, then $r(H) = O_d(n)$.

Upshot: *H* has linear Ramsey number "if and only if" *H* is sparse. Qualitatively, *n* and *d* control r(H).

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Observation: A transitive tournament contains only acyclic digraphs. So $\vec{r}(H) = \infty$ unless *H* is acyclic.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Observation: A transitive tournament contains only acyclic digraphs. So $\vec{r}(H) = \infty$ unless *H* is acyclic.

Theorem (Stearns 1959, Erdős–Moser 1964) If $\overrightarrow{T_n}$ denotes the transitive tournament on n vertices, then

$$2^{n/2-1} \leq \vec{r}(\overrightarrow{T_n}) \leq 2^{n-1}$$

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Observation: A transitive tournament contains only acyclic digraphs. So $\vec{r}(H) = \infty$ unless *H* is acyclic.

Theorem (Stearns 1959, Erdős–Moser 1964) If $\overrightarrow{T_n}$ denotes the transitive tournament on *n* vertices, then

$$2^{n/2-1} \leq \vec{r}(\overrightarrow{T_n}) \leq 2^{n-1}.$$

• The upper bound implies that $\vec{r}(H)$ exists for all acyclic H. Like the undirected Ramsey number, $\vec{r}(H)$ can be exponential in n.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Observation: A transitive tournament contains only acyclic digraphs. So $\vec{r}(H) = \infty$ unless *H* is acyclic.

Theorem (Stearns 1959, Erdős–Moser 1964) If $\overrightarrow{T_n}$ denotes the transitive tournament on *n* vertices, then

$$2^{n/2-1} \leq \vec{r}(\overrightarrow{T_n}) \leq 2^{n-1}.$$

- The upper bound implies that $\vec{r}(H)$ exists for all acyclic H. Like the undirected Ramsey number, $\vec{r}(H)$ can be exponential in n.
- Is the analogue of the Burr-Erdős conjecture true for digraphs?

Main Question (Bucić–Letzter–Sudakov 2019) Is $\vec{r}(H) = O(n)$ for all bounded-degree H?

Main Question (Bucić–Letzter–Sudakov 2019) Is $\vec{r}(H) = O(n)$ for all bounded-degree H?

Conjecture (Sumner 1971)

If *H* is some orientation of an *n*-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Main Question (Bucić–Letzter–Sudakov 2019) Is $\vec{r}(H) = O(n)$ for all bounded-degree H?

Conjecture (Sumner 1971)

If *H* is some orientation of an *n*-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Progress on Sumner's conjecture

• Häggkvist–Thomason (1991): $\vec{r}(H) \leq 12n$.

Main Question (Bucić–Letzter–Sudakov 2019) Is $\vec{r}(H) = O(n)$ for all bounded-degree H?

Conjecture (Sumner 1971)

If *H* is some orientation of an *n*-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Progress on Sumner's conjecture

- Häggkvist–Thomason (1991): $\vec{r}(H) \leq 12n$.
- Kühn–Mycroft–Osthus (2011): $\vec{r}(H) \leq 2n 2$ for *n* large enough.

Main Question (Bucić–Letzter–Sudakov 2019) Is $\vec{r}(H) = O(n)$ for all bounded-degree H?

Conjecture (Sumner 1971)

If *H* is some orientation of an *n*-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Progress on Sumner's conjecture

- Häggkvist–Thomason (1991): $\vec{r}(H) \leq 12n$.
- Kühn–Mycroft–Osthus (2011): $\vec{r}(H) \leq 2n 2$ for *n* large enough.
- Dross-Havet (2019): $\vec{r}(H) \leq \frac{21}{8}n \frac{47}{16}$.

Main Question (Bucić–Letzter–Sudakov 2019) Is $\vec{r}(H) = O(n)$ for all bounded-degree H?

Conjecture (Sumner 1971)

If *H* is some orientation of an *n*-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Progress on Sumner's conjecture

- Häggkvist–Thomason (1991): $\vec{r}(H) \leq 12n$.
- Kühn–Mycroft–Osthus (2011): $\vec{r}(H) \leq 2n 2$ for *n* large enough.
- Dross-Havet (2019): $\vec{r}(H) \leq \frac{21}{8}n \frac{47}{16}$.

What about other sparse digraphs H?

Main Question (Bucić–Letzter–Sudakov 2019)

Is $\vec{r}(H) = O(n)$ for all bounded-degree H?

Main Question (Bucić–Letzter–Sudakov 2019)

Is $\vec{r}(H) = O(n)$ for all bounded-degree H?

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for n large enough.

Main Question (Bucić–Letzter–Sudakov 2019)

Is $\vec{r}(H) = O(n)$ for all bounded-degree H?

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for n large enough.

Define the *bandwidth* of an acyclic digraph H to be the minimum k such that H can be ordered v_1, \ldots, v_n so that edges $v_i \rightarrow v_j$ exist only if $1 \le j - i \le k$.

Main Question (Bucić-Letzter-Sudakov 2019)

Is $\vec{r}(H) = O(n)$ for all bounded-degree H?

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for n large enough.

Define the *bandwidth* of an acyclic digraph H to be the minimum k such that H can be ordered v_1, \ldots, v_n so that edges $v_i \rightarrow v_j$ exist only if $1 \le j - i \le k$.

Theorem (DDFGHKLMSS 2020)

If H has bandwidth k, then $\vec{r}(H) = O_k(n)$.

Theorem (Fox-H.-Wigderson 2021)

For all C > 0 and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3/2+o(1)}$ satisfying $\vec{r}(H) > n^{C}$.

Theorem (Fox-H.-Wigderson 2021)

For all C > 0 and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3/2+o(1)}$ satisfying $\vec{r}(H) > n^{C}$.

Theorem (Fox-H.-Wigderson 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

Theorem (Fox-H.-Wigderson 2021)

For all C > 0 and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3/2+o(1)}$ satisfying $\vec{r}(H) > n^{C}$.

Theorem (Fox-H.-Wigderson 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

• In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.

Theorem (Fox-H.-Wigderson 2021)

For all C > 0 and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3/2+o(1)}$ satisfying $\vec{r}(H) > n^{C}$.

Theorem (Fox-H.-Wigderson 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot (\log n)^{O_{\Delta}(1)}$.
Theorem (Fox-H.-Wigderson 2021)

For all C > 0 and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3/2+o(1)}$ satisfying $\vec{r}(H) > n^{C}$.

Theorem (Fox-H.-Wigderson 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot (\log n)^{O_{\Delta}(1)}$.
- If H has height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Theorem (Fox-H.-Wigderson 2021)

For all C > 0 and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3/2+o(1)}$ satisfying $\vec{r}(H) > n^{C}$.

Theorem (Fox-H.-Wigderson 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot (\log n)^{O_{\Delta}(1)}$.
- If H has height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Theorem (Fox-H.-Wigderson 2021)

For all C > 0 and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3/2+o(1)}$ satisfying $\vec{r}(H) > n^{C}$.

Theorem (Fox-H.-Wigderson 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot (\log n)^{O_{\Delta}(1)}$.
- If H has height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Outline of Talk

1. Proof of lower bound $\vec{r}(H) > n^{\log_2(3) - o(1)}$.

Theorem (Fox-H.-Wigderson 2021)

For all C > 0 and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3/2+o(1)}$ satisfying $\vec{r}(H) > n^{C}$.

Theorem (Fox-H.-Wigderson 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot (\log n)^{O_{\Delta}(1)}$.
- If H has height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Outline of Talk

- 1. Proof of lower bound $\vec{r}(H) > n^{\log_2(3) o(1)}$.
- 2. Proof of the height upper bound: greedy embedding.

Theorem (Fox-H.-Wigderson 2021)

For all C > 0 and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3/2+o(1)}$ satisfying $\vec{r}(H) > n^{C}$.

Theorem (Fox-H.-Wigderson 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot (\log n)^{O_{\Delta}(1)}$.
- If H has height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Outline of Talk

- 1. Proof of lower bound $\vec{r}(H) > n^{\log_2(3) o(1)}$.
- 2. Proof of the height upper bound: greedy embedding.
- 3. Results on multicolor Ramsey numbers.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H) > n^{\log_2(3) - o(1)}$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H) > n^{\log_2(3) - o(1)}$.

Let T be an iterated blowup of a cyclic triangle on N vertices:

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H) > n^{\log_2(3) - o(1)}$.

Let T be an iterated blowup of a cyclic triangle on N vertices:

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H) > n^{\log_2(3)-o(1)}$.

Let T be an iterated blowup of a cyclic triangle on N vertices:

Key Idea: We will construct H on [n] so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49n maps to a single third of T.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H) > n^{\log_2(3)-o(1)}$.

Let T be an iterated blowup of a cyclic triangle on N vertices:

Key Idea: We will construct H on [n] so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49n maps to a single third of T.

We ensure that induced subgraphs of H on subintervals inherit this property, so we can iterate.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H) > n^{\log_2(3) - o(1)}$.

Let T be an iterated blowup of a cyclic triangle on N vertices:

Key Idea: We will construct H on [n] so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49n maps to a single third of T.

We ensure that induced subgraphs of H on subintervals inherit this property, so we can iterate. After t iterations, we find a subinterval of H of length $(0.49)^t n$ that maps to a single part of T of size $3^{-t}N$.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Definition

A digraph H on [n] is an *interval mesh* if edges point forward and:

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Definition

A digraph H on [n] is an *interval mesh* if edges point forward and:

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Definition

A digraph H on [n] is an *interval mesh* if edges point forward and:

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Definition

A digraph H on [n] is an *interval mesh* if edges point forward and:

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Definition

A digraph H on [n] is an *interval mesh* if edges point forward and:

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Definition

A digraph H on [n] is an *interval mesh* if edges point forward and:

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Definition

A digraph H on [n] is an *interval mesh* if edges point forward and:

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Definition

A digraph H on [n] is an *interval mesh* if edges point forward and:

For all $0 \le a < b \le c < d \le n$ with $c - b \le 100 \min(b - a, d - c)$, there is an edge from (a, b] to (c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Definition

A digraph H on [n] is an *interval mesh* if edges point forward and:

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$. So $|J_i|$ is unimodal and $\max_i |J_i| \ge 0.49n$.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length 0.49*n* is mapped into a single part, and this property is hereditary.

Definition

A digraph H on [n] is an *interval mesh* if edges point forward and:

For all $0 \le a < b \le c < d \le n$ with $c - b \le 100 \min(b - a, d - c)$, there is an edge from (a, b] to (c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$. So $|J_i|$ is unimodal and $\max_i |J_i| \ge 0.49n$.

We can greedily construct interval meshes on [n] with max degree 1000.

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Theorem

If H has n vertices, max degree Δ , and height h, then $\vec{r}(H) = O_{\Delta,h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Iterating the lemma log h times, we find h sets in T with most edges oriented forwards:

It is easy to embed H into these sets greedily.

Definition

If $k \ge 1$, the k-color Ramsey number $\overrightarrow{r_k}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

Definition

If $k \ge 1$, the k-color Ramsey number $\overrightarrow{r_k}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

We showed: For k = 1, if H has n vertices and maximum degree Δ , then $\overrightarrow{r_1}(H) \leq n^{O_{\Delta}(\log n)}$, but $\overrightarrow{r_1}(H) \geq n^C$ is possible for any C > 0.

Definition

If $k \ge 1$, the k-color Ramsey number $\overrightarrow{r_k}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

We showed: For k = 1, if H has n vertices and maximum degree Δ , then $\overrightarrow{r_1}(H) \leq n^{O_{\Delta}(\log n)}$, but $\overrightarrow{r_1}(H) \geq n^C$ is possible for any C > 0.

Theorem (Fox-H.-Wigderson 2021)

If H has n vertices and maximum degree Δ , then $\overrightarrow{r_{k}}(H) < n^{O_{\Delta}(\log^{O_{k}(1)} n)}$

Definition

If $k \ge 1$, the k-color Ramsey number $\overrightarrow{r_k}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

We showed: For k = 1, if H has n vertices and maximum degree Δ , then $\overrightarrow{r_1}(H) \leq n^{O_{\Delta}(\log n)}$, but $\overrightarrow{r_1}(H) \geq n^C$ is possible for any C > 0.

Theorem (Fox-H.-Wigderson 2021)

If H has n vertices and maximum degree Δ , then $\overrightarrow{r_k}(H) \leq n^{O_{\Delta}(\log^{O_k(1)} n)}.$

For $k \ge 2$, there exists H of maximum degree 3 and $\overrightarrow{r_k}(H) \ge n^{\Omega(\log n/\log \log n)}$.

Definition

If $k \ge 1$, the k-color Ramsey number $\overrightarrow{r_k}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

We showed: For k = 1, if H has n vertices and maximum degree Δ , then $\overrightarrow{r_1}(H) \leq n^{O_{\Delta}(\log n)}$, but $\overrightarrow{r_1}(H) \geq n^C$ is possible for any C > 0.

Theorem (Fox-H.-Wigderson 2021)

If H has n vertices and maximum degree Δ , then $\overrightarrow{r_k}(H) \leq n^{O_{\Delta}(\log^{O_k(1)} n)}.$

For $k \ge 2$, there exists H of maximum degree 3 and $\overrightarrow{r_k}(H) \ge n^{\Omega(\log n/\log \log n)}$.

Proof compares digraph Ramsey numbers to ordered Ramsey numbers.

Definition

If $k \ge 1$, the k-color Ramsey number $\overrightarrow{r_k}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

We showed: For k = 1, if H has n vertices and maximum degree Δ , then $\overrightarrow{r_1}(H) \leq n^{O_{\Delta}(\log n)}$, but $\overrightarrow{r_1}(H) \geq n^C$ is possible for any C > 0.

Theorem (Fox-H.-Wigderson 2021)

If H has n vertices and maximum degree Δ , then $\overrightarrow{r_k}(H) < n^{O_{\Delta}(\log^{O_k(1)} n)}.$

For $k \ge 2$, there exists H of maximum degree 3 and $\overrightarrow{r_k}(H) \ge n^{\Omega(\log n/\log \log n)}$.

Proof compares digraph Ramsey numbers to ordered Ramsey numbers. Conlon–Fox–Lee–Sudakov and Balko–Cibulka–Král–Kynčl proved that random ordered matchings have large ordered Ramsey numbers.

Let *H* have *n* vertices and maximum degree Δ .

Let *H* have *n* vertices and maximum degree Δ .

Conjecture.

For any C > 0, there exist H with Δ independent of C for which $\vec{r}(H) \ge n^C$.

Let *H* have *n* vertices and maximum degree Δ .

Conjecture.

For any C > 0, there exist H with Δ independent of C for which $\vec{r}(H) \ge n^C$.

Conjecture.

For a random H, $\vec{r}(H) = O_{\Delta}(n)$ almost surely.

Let *H* have *n* vertices and maximum degree Δ .

Conjecture.

For any C > 0, there exist H with Δ independent of C for which $\vec{r}(H) \ge n^C$.

Conjecture.

For a random *H*, $\vec{r}(H) = O_{\Delta}(n)$ almost surely.

Question.

We know that $\vec{r}(H) = O(n)$ if H has bounded height or bounded bandwidth. Is there a single natural notion of "multiscale complexity" that captures both these parameters and implies $\vec{r}(H) = O(n)$?

Thank you!