Ramsey numbers of sparse digraphs

Xiaoyu He (Stanford)
Joint with Jacob Fox and Yuval Wigderson

March 9, 2021

Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Proof: Take a median ordering of a tournament, which orders the vertices to maximize the number of forward edges.

Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Proof: Take a median ordering of a tournament, which orders the vertices to maximize the number of forward edges.

Definition

The (oriented) Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Proof: Take a median ordering of a tournament, which orders the vertices to maximize the number of forward edges.

Definition

The (oriented) Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Rédei's theorem is equivalent to $\vec{r}\left(P_{n}\right)=n$, where P_{n} is the oriented path on n vertices.

Undirected Ramsey numbers

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every N -vertex two-edge-colored complete graph contains a monochromatic copy of H.

Undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every N -vertex two-edge-colored complete graph contains a monochromatic copy of H.

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n}
$$

Undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every N -vertex two-edge-colored complete graph contains a monochromatic copy of H.

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n}
$$

- The upper bound implies that $r(H)$ exists for all H (Ramsey 1930).

Undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every N -vertex two-edge-colored complete graph contains a monochromatic copy of H.

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n}
$$

- The upper bound implies that $r(H)$ exists for all H (Ramsey 1930).
- In general, $r(H)$ can be exponential in n, but if H is a tree or cycle, then $r(H)=O(n)$.

Undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every N -vertex two-edge-colored complete graph contains a monochromatic copy of H.

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n}
$$

- The upper bound implies that $r(H)$ exists for all H (Ramsey 1930).
- In general, $r(H)$ can be exponential in n, but if H is a tree or cycle, then $r(H)=O(n)$.
- Burr-Erdős (1975): Is $r(H)$ linear in n for all sparse graphs H ?

The Burr-Erdős conjecture

Burr-Erdős (1975): Is $r(H)$ linear in n for all sparse graphs H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.

The Burr-Erdős conjecture

Burr-Erdős (1975): Is $r(H)$ linear in n for all sparse graphs H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.
A weaker notion of sparsity is degeneracy. The degeneracy of H is

$$
d:=\max _{H^{\prime} \subseteq H}\left(\operatorname{mindeg}\left(H^{\prime}\right)\right) .
$$

The Burr-Erdős conjecture

Burr-Erdős (1975): Is $r(H)$ linear in n for all sparse graphs H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.
A weaker notion of sparsity is degeneracy. The degeneracy of H is

$$
d:=\max _{H^{\prime} \subseteq H}\left(\operatorname{mindeg}\left(H^{\prime}\right)\right) .
$$

If H is d-degenerate, then $r(H) \geq 2^{d / 2}$, so graphs of high degeneracy have large Ramsey numbers.

The Burr-Erdős conjecture

Burr-Erdős (1975): Is $r(H)$ linear in n for all sparse graphs H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.
A weaker notion of sparsity is degeneracy. The degeneracy of H is

$$
d:=\max _{H^{\prime} \subseteq H}\left(\operatorname{mindeg}\left(H^{\prime}\right)\right) .
$$

If H is d-degenerate, then $r(H) \geq 2^{d / 2}$, so graphs of high degeneracy have large Ramsey numbers.

Conjecture (Burr-Erdős 1975)

If H is d-degenerate, then $r(H)=O_{d}(n)$.

The Burr-Erdős conjecture

Burr-Erdős (1975): Is $r(H)$ linear in n for all sparse graphs H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.
A weaker notion of sparsity is degeneracy. The degeneracy of H is

$$
d:=\max _{H^{\prime} \subseteq H}\left(\operatorname{mindeg}\left(H^{\prime}\right)\right) .
$$

If H is d-degenerate, then $r(H) \geq 2^{d / 2}$, so graphs of high degeneracy have large Ramsey numbers.

Conjecture (Burr-Erdős 1975), Theorem (Lee 2017)
If H is d-degenerate, then $r(H)=O_{d}(n)$.

The Burr-Erdős conjecture

Burr-Erdős (1975): Is $r(H)$ linear in n for all sparse graphs H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.
A weaker notion of sparsity is degeneracy. The degeneracy of H is

$$
d:=\max _{H^{\prime} \subseteq H}\left(\operatorname{mindeg}\left(H^{\prime}\right)\right) .
$$

If H is d-degenerate, then $r(H) \geq 2^{d / 2}$, so graphs of high degeneracy have large Ramsey numbers.

Conjecture (Burr-Erdős 1975), Theorem (Lee 2017)

If H is d-degenerate, then $r(H)=O_{d}(n)$.
Upshot: H has linear Ramsey number "if and only if" H is sparse. Qualitatively, n and d control $r(H)$.

Ramsey numbers of digraphs

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Ramsey numbers of digraphs

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Observation: A transitive tournament contains only acyclic digraphs. So $\vec{r}(H)=\infty$ unless H is acyclic.

Ramsey numbers of digraphs

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Observation: A transitive tournament contains only acyclic digraphs. So $\vec{r}(H)=\infty$ unless H is acyclic.

Theorem (Stearns 1959, Erdős-Moser 1964)
If $\overrightarrow{T_{n}}$ denotes the transitive tournament on n vertices, then

$$
2^{n / 2-1} \leq \vec{r}\left(\overrightarrow{T_{n}}\right) \leq 2^{n-1} .
$$

Ramsey numbers of digraphs

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Observation: A transitive tournament contains only acyclic digraphs. So $\vec{r}(H)=\infty$ unless H is acyclic.

Theorem (Stearns 1959, Erdős-Moser 1964)
If $\overrightarrow{T_{n}}$ denotes the transitive tournament on n vertices, then

$$
2^{n / 2-1} \leq \vec{r}\left(\overrightarrow{T_{n}}\right) \leq 2^{n-1} .
$$

- The upper bound implies that $\vec{r}(H)$ exists for all acyclic H. Like the undirected Ramsey number, $\vec{r}(H)$ can be exponential in n.

Ramsey numbers of digraphs

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Observation: A transitive tournament contains only acyclic digraphs. So $\vec{r}(H)=\infty$ unless H is acyclic.

Theorem (Stearns 1959, Erdős-Moser 1964)
If $\overrightarrow{T_{n}}$ denotes the transitive tournament on n vertices, then

$$
2^{n / 2-1} \leq \vec{r}\left(\overrightarrow{T_{n}}\right) \leq 2^{n-1} .
$$

- The upper bound implies that $\vec{r}(H)$ exists for all acyclic H. Like the undirected Ramsey number, $\vec{r}(H)$ can be exponential in n.
- Is the analogue of the Burr-Erdős conjecture true for digraphs?

Is $\vec{r}(H)=O(n)$ for sparse H ?

Main Question (Bucić-Letzter-Sudakov 2019)
Is $\vec{r}(H)=O(n)$ for all bounded-degree H ?

Is $\vec{r}(H)=O(n)$ for sparse H ?

Main Question (Bucić-Letzter-Sudakov 2019)
Is $\vec{r}(H)=O(n)$ for all bounded-degree H ?
Conjecture (Sumner 1971)
If H is some orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.

Is $\vec{r}(H)=O(n)$ for sparse H ?

Main Question (Bucić-Letzter-Sudakov 2019)
Is $\vec{r}(H)=O(n)$ for all bounded-degree H ?
Conjecture (Sumner 1971)
If H is some orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.
Progress on Sumner's conjecture

- Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12 n$.

Is $\vec{r}(H)=O(n)$ for sparse H ?

Main Question (Bucić-Letzter-Sudakov 2019)
Is $\vec{r}(H)=O(n)$ for all bounded-degree H ?
Conjecture (Sumner 1971)
If H is some orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.
Progress on Sumner's conjecture

- Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12 n$.
- Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2 n-2$ for n large enough.

Is $\vec{r}(H)=O(n)$ for sparse H ?

Main Question (Bucić-Letzter-Sudakov 2019)
Is $\vec{r}(H)=O(n)$ for all bounded-degree H ?
Conjecture (Sumner 1971)
If H is some orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.
Progress on Sumner's conjecture

- Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12 n$.
- Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2 n-2$ for n large enough.
- Dross-Havet (2019): $\vec{r}(H) \leq \frac{21}{8} n-\frac{47}{16}$.

Is $\vec{r}(H)=O(n)$ for sparse H ?

Main Question (Bucić-Letzter-Sudakov 2019)
Is $\vec{r}(H)=O(n)$ for all bounded-degree H ?
Conjecture (Sumner 1971)
If H is some orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.
Progress on Sumner's conjecture

- Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12 n$.
- Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2 n-2$ for n large enough.
- Dross-Havet (2019): $\vec{r}(H) \leq \frac{21}{8} n-\frac{47}{16}$.

What about other sparse digraphs H ?

Is $\vec{r}(H)=O(n)$ for sparse H ?

Main Question (Bucić-Letzter-Sudakov 2019)
Is $\vec{r}(H)=O(n)$ for all bounded-degree H ?

Is $\vec{r}(H)=O(n)$ for sparse H ?

Main Question (Bucić-Letzter-Sudakov 2019)
Is $\vec{r}(H)=O(n)$ for all bounded-degree H ?
Theorem (Thomason 1986)
If H is any acyclic orientation of C_{n}, then $\vec{r}(H)=n$ for n large enough.

Is $\vec{r}(H)=O(n)$ for sparse H ?

Main Question (Bucić-Letzter-Sudakov 2019)
Is $\vec{r}(H)=O(n)$ for all bounded-degree H ?
Theorem (Thomason 1986)
If H is any acyclic orientation of C_{n}, then $\vec{r}(H)=n$ for n large enough.
Define the bandwidth of an acyclic digraph H to be the minimum k such that H can be ordered v_{1}, \ldots, v_{n} so that edges $v_{i} \rightarrow v_{j}$ exist only if $1 \leq j-i \leq k$.

Is $\vec{r}(H)=O(n)$ for sparse H ?

Main Question (Bucić-Letzter-Sudakov 2019)
Is $\vec{r}(H)=O(n)$ for all bounded-degree H ?
Theorem (Thomason 1986)
If H is any acyclic orientation of C_{n}, then $\vec{r}(H)=n$ for n large enough.
Define the bandwidth of an acyclic digraph H to be the minimum k such that H can be ordered v_{1}, \ldots, v_{n} so that edges $v_{i} \rightarrow v_{j}$ exist only if $1 \leq j-i \leq k$.

Theorem (DDFGHKLMSS 2020)
If H has bandwidth k, then $\vec{r}(H)=O_{k}(n)$.

Our Results

Theorem (Fox-H.-Wigderson 2021)

For all $C>0$ and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3 / 2+o(1)}$ satisfying $\vec{r}(H)>n^{C}$.

Our Results

Theorem (Fox-H.-Wigderson 2021)

For all $C>0$ and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3 / 2+o(1)}$ satisfying $\vec{r}(H)>n^{C}$.

Theorem (Fox-H.-Wigderson 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

Our Results

Theorem (Fox-H.-Wigderson 2021)

For all $C>0$ and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3 / 2+o(1)}$ satisfying $\vec{r}(H)>n^{C}$.

Theorem (Fox-H.-Wigderson 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.

Our Results

Theorem (Fox-H.-Wigderson 2021)

For all $C>0$ and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3 / 2+o(1)}$ satisfying $\vec{r}(H)>n^{C}$.

Theorem (Fox-H.-Wigderson 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot(\log n)^{O_{\Delta}(1)}$.

Our Results

Theorem (Fox-H.-Wigderson 2021)

For all $C>0$ and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3 / 2+o(1)}$ satisfying $\vec{r}(H)>n^{C}$.

Theorem (Fox-H.-Wigderson 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot(\log n)^{O_{\Delta}(1)}$.
- If H has height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Our Results

Theorem (Fox-H.-Wigderson 2021)

For all $C>0$ and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3 / 2+o(1)}$ satisfying $\vec{r}(H)>n^{C}$.

Theorem (Fox-H.-Wigderson 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot(\log n)^{O_{\Delta}(1)}$.
- If H has height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Our Results

Theorem (Fox-H.-Wigderson 2021)

For all $C>0$ and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3 / 2+o(1)}$ satisfying $\vec{r}(H)>n^{C}$.

Theorem (Fox-H.-Wigderson 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot(\log n)^{O_{\Delta}(1)}$.
- If H has height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Outline of Talk

1. Proof of lower bound $\vec{r}(H)>n^{\log _{2}(3)-o(1)}$.

Our Results

Theorem (Fox-H.-Wigderson 2021)

For all $C>0$ and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3 / 2+o(1)}$ satisfying $\vec{r}(H)>n^{C}$.

Theorem (Fox-H.-Wigderson 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot(\log n)^{O_{\Delta}(1)}$.
- If H has height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Outline of Talk

1. Proof of lower bound $\vec{r}(H)>n^{\log _{2}(3)-o(1)}$.
2. Proof of the height upper bound: greedy embedding.

Our Results

Theorem (Fox-H.-Wigderson 2021)

For all $C>0$ and n large enough, there is an n-vertex acyclic digraph H with maximum degree $\Delta \leq C^{3 / 2+o(1)}$ satisfying $\vec{r}(H)>n^{C}$.

Theorem (Fox-H.-Wigderson 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

- In general, $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot(\log n)^{O_{\Delta}(1)}$.
- If H has height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Outline of Talk

1. Proof of lower bound $\vec{r}(H)>n^{\log _{2}(3)-o(1)}$.
2. Proof of the height upper bound: greedy embedding.
3. Results on multicolor Ramsey numbers.

Lower bound proof

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H)>n^{\log _{2}(3)-o(1)}$.

Lower bound proof

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H)>n^{\log _{2}(3)-o(1)}$.

Let T be an iterated blowup of a cyclic triangle on N vertices:

Lower bound proof

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H)>n^{\log _{2}(3)-o(1)}$.

Let T be an iterated blowup of a cyclic triangle on N vertices:

Lower bound proof

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H)>n^{\log _{2}(3)-o(1)}$.

Let T be an iterated blowup of a cyclic triangle on N vertices:

Key Idea: We will construct H on [n] so that in any embedding $H \hookrightarrow T$, some subinterval of $[n]$ of length $0.49 n$ maps to a single third of T.

Lower bound proof

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H)>n^{\log _{2}(3)-o(1)}$.

Let T be an iterated blowup of a cyclic triangle on N vertices:

Key Idea: We will construct H on [n] so that in any embedding $H \hookrightarrow T$, some subinterval of $[n]$ of length $0.49 n$ maps to a single third of T.

We ensure that induced subgraphs of H on subintervals inherit this property, so we can iterate.

Lower bound proof

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000 and $\vec{r}(H)>n^{\log _{2}(3)-o(1)}$.

Let T be an iterated blowup of a cyclic triangle on N vertices:

Key Idea: We will construct H on [n] so that in any embedding $H \hookrightarrow T$, some subinterval of $[n]$ of length $0.49 n$ maps to a single third of T.

We ensure that induced subgraphs of H on subintervals inherit this property, so we can iterate. After t iterations, we find a subinterval of H of length $(0.49)^{t} n$ that maps to a single part of T of size $3^{-t} N$.

Lower bound proof: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Lower bound proof: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Definition

A digraph H on $[n]$ is an interval mesh if edges point forward and:

Lower bound proof: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Definition

A digraph H on $[n]$ is an interval mesh if edges point forward and:
For all $0 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge from ($a, b]$ to ($c, d]$.

Lower bound proof: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Definition

A digraph H on $[n]$ is an interval mesh if edges point forward and:
For all $0 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge from ($a, b]$ to $(c, d]$.

Lower bound proof: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Definition

A digraph H on $[n]$ is an interval mesh if edges point forward and:
For all $0 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge from ($a, b]$ to $(c, d]$.

Lower bound proof: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Definition

A digraph H on $[n]$ is an interval mesh if edges point forward and:
For all $0 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge from ($a, b]$ to $(c, d]$.

Lower bound proof: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Definition

A digraph H on $[n]$ is an interval mesh if edges point forward and:
For all $0 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge from ($a, b]$ to (c, d].

Lower bound proof: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Definition

A digraph H on $[n]$ is an interval mesh if edges point forward and:
For all $0 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge from ($a, b]$ to ($c, d]$.

Lower bound proof: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Definition

A digraph H on $[n]$ is an interval mesh if edges point forward and:
For all $0 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge from ($a, b]$ to ($c, d]$.

Thus, $\left|J_{i}\right|>100 \min \left(\left|J_{i-1}\right|,\left|J_{i+1}\right|\right)$.

Lower bound proof: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Definition

A digraph H on $[n]$ is an interval mesh if edges point forward and:
For all $0 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge from ($a, b]$ to $(c, d]$.

Thus, $\left|J_{i}\right|>100 \mathrm{~min}\left(\left|J_{i-1}\right|,\left|J_{i+1}\right|\right)$. So $\left|J_{i}\right|$ is unimodal and $\max _{i}\left|J_{i}\right| \geq 0.49$ n.

Lower bound proof: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $0.49 n$ is mapped into a single part, and this property is hereditary.

Definition

A digraph H on $[n]$ is an interval mesh if edges point forward and:
For all $0 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge from $(a, b]$ to $(c, d]$.

Thus, $\left|J_{i}\right|>100 \mathrm{~min}\left(\left|J_{i-1}\right|,\left|J_{i+1}\right|\right)$. So $\left|J_{i}\right|$ is unimodal and $\max _{i}\left|J_{i}\right| \geq 0.49$ n.

We can greedily construct interval meshes on $[n]$ with max degree 1000 .

Upper bound proof: greedy embedding

Theorem
If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem
If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Iterating the lemma $\log h$ times, we find h sets in T with most edges oriented forwards:

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Iterating the lemma $\log h$ times, we find h sets in T with most edges oriented forwards:

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Iterating the lemma $\log h$ times, we find h sets in T with most edges oriented forwards:

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Iterating the lemma $\log h$ times, we find h sets in T with most edges oriented forwards:

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Iterating the lemma $\log h$ times, we find h sets in T with most edges oriented forwards:

Upper bound proof: greedy embedding

Theorem

If H has n vertices, max degree Δ, and height h, then $\vec{r}(H)=O_{\Delta, h}(n)$.

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

Iterating the lemma $\log h$ times, we find h sets in T with most edges oriented forwards:

It is easy to embed H into these sets greedily.

What about more than one color?

Definition

If $k \geq 1$, the k-color Ramsey number $\overrightarrow{r_{k}}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

What about more than one color?

Definition

If $k \geq 1$, the k-color Ramsey number $\overrightarrow{r_{k}}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

We showed: For $k=1$, if H has n vertices and maximum degree Δ, then $\overrightarrow{r_{1}}(H) \leq n^{O_{\Delta}}(\log n)$, but $\overrightarrow{r_{1}}(H) \geq n^{C}$ is possible for any $C>0$.

What about more than one color?

Definition

If $k \geq 1$, the k-color Ramsey number $\overrightarrow{r_{k}}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

We showed: For $k=1$, if H has n vertices and maximum degree Δ, then $\overrightarrow{r_{1}}(H) \leq n^{O_{\Delta}}(\log n)$, but $\overrightarrow{r_{1}}(H) \geq n^{C}$ is possible for any $C>0$.
Theorem (Fox-H.-Wigderson 2021)
If H has n vertices and maximum degree Δ, then

$$
\overrightarrow{r_{k}}(H) \leq n^{O_{\Delta}\left(\log ^{O_{k}(1)} n\right)}
$$

What about more than one color?

Definition

If $k \geq 1$, the k-color Ramsey number $\overrightarrow{r_{k}}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

We showed: For $k=1$, if H has n vertices and maximum degree Δ, then $\overrightarrow{r_{1}}(H) \leq n^{O_{\Delta}}(\log n)$, but $\overrightarrow{r_{1}}(H) \geq n^{C}$ is possible for any $C>0$.
Theorem (Fox-H.-Wigderson 2021)
If H has n vertices and maximum degree Δ, then

$$
\overrightarrow{r_{k}}(H) \leq n^{O_{\Delta}\left(\log _{k} o^{(1)} n\right)} .
$$

For $k \geq 2$, there exists H of maximum degree 3 and

$$
\overrightarrow{r_{k}}(H) \geq n^{\Omega(\log n / \log \log n)}
$$

What about more than one color?

Definition

If $k \geq 1$, the k-color Ramsey number $\vec{r}_{k}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

We showed: For $k=1$, if H has n vertices and maximum degree Δ, then $\overrightarrow{r_{1}}(H) \leq n^{O_{\Delta}}(\log n)$, but $\overrightarrow{r_{1}}(H) \geq n^{C}$ is possible for any $C>0$.
Theorem (Fox-H.-Wigderson 2021)
If H has n vertices and maximum degree Δ, then

$$
\overrightarrow{r_{k}}(H) \leq n^{O_{\Delta}\left(\log _{k} O^{(1)} n\right)} .
$$

For $k \geq 2$, there exists H of maximum degree 3 and

$$
\overrightarrow{r_{k}}(H) \geq n^{\Omega(\log n / \log \log n)}
$$

Proof compares digraph Ramsey numbers to ordered Ramsey numbers.

What about more than one color?

Definition

If $k \geq 1$, the k-color Ramsey number $\overrightarrow{r_{k}}(H)$ of a digraph H is the minimum N such that any k-edge-colored N-vertex tournament contains a monochromatic copy of H.

We showed: For $k=1$, if H has n vertices and maximum degree Δ, then $\overrightarrow{r_{1}}(H) \leq n^{O_{\Delta}}(\log n)$, but $\overrightarrow{r_{1}}(H) \geq n^{C}$ is possible for any $C>0$.

Theorem (Fox-H.-Wigderson 2021)
If H has n vertices and maximum degree Δ, then

$$
\overrightarrow{r_{k}}(H) \leq n^{O_{\Delta}\left(\log _{k} O^{(1)} n\right)} .
$$

For $k \geq 2$, there exists H of maximum degree 3 and

$$
\overrightarrow{r_{k}}(H) \geq n^{\Omega(\log n / \log \log n)}
$$

Proof compares digraph Ramsey numbers to ordered Ramsey numbers. Conlon-Fox-Lee-Sudakov and Balko-Cibulka-Král-Kynčl proved that random ordered matchings have large ordered Ramsey numbers.

Open questions

Let H have n vertices and maximum degree Δ.

Open questions

Let H have n vertices and maximum degree Δ.

Conjecture.

For any $C>0$, there exist H with Δ independent of C for which $\vec{r}(H) \geq n^{C}$.

Open questions

Let H have n vertices and maximum degree Δ.
Conjecture.
For any $C>0$, there exist H with Δ independent of C for which $\vec{r}(H) \geq n^{C}$.

Conjecture.
For a random $H, \vec{r}(H)=O_{\Delta}(n)$ almost surely.

Open questions

Let H have n vertices and maximum degree Δ.

Conjecture.

For any $C>0$, there exist H with Δ independent of C for which $\vec{r}(H) \geq n^{C}$.

Conjecture.

For a random $H, \vec{r}(H)=O_{\Delta}(n)$ almost surely.

Question.

We know that $\vec{r}(H)=O(n)$ if H has bounded height or bounded bandwidth. Is there a single natural notion of "multiscale complexity" that captures both these parameters and implies $\vec{r}(H)=O(n)$?

Thank you!

