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Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Proof: Take a median ordering of a tournament,
which orders the vertices to maximize the number
of forward edges.

Definition
The (oriented) Ramsey number /(H) of a digraph H is the minimum N
such that every N-vertex tournament contains a copy of H.

Rédei’s theorem is equivalent to A P,) = n, where P, is the oriented path
on n vertices.
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Undirected Ramsey numbers

Definition
The Ramsey number r(H) of a graph H is the minimum N such that

every N-vertex two-edge-colored complete graph contains a
monochromatic copy of H.

Theorem (Erdés—Szekeres 1935, Erdés 1947)

2n/2 < r(K,,) < 22n

® The upper bound implies that r(H) exists for all H (Ramsey 1930).

® In general, r(H) can be exponential in n, but if H is a tree or cycle,
then r(H) = O(n).
® Burr-Erdés (1975): Is r(H) linear in n for all sparse graphs H?
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The Burr—Erdos conjecture

Burr—Erd8s (1975): Is r(H) linear in n for all sparse graphs H?
Theorem (Chvatal-RédI-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree A, then r(H) = Oa(n).
A weaker notion of sparsity is degeneracy. The degeneracy of H is
o H 4
d:= I_rpgﬁl(mmdeg(H)).

If His d-degenerate, then r(H) > 29/2 5o graphs of high degeneracy have
large Ramsey numbers.

Conjecture (Burr-Erdés 1975), Theorem (Lee 2017)
If H is d-degenerate, then r(H) = Oq4(n).

Upshot: H has linear Ramsey number “if and only if” H is sparse.
Qualitatively, n and d control r(H).
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Definition
The Ramsey number H{(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Observation: A transitive tournament contains only acyclic digraphs.
So A H) = oo unless H is acyclic.

Theorem (Stearns 1959, Erdés—Moser 1964 )

If T,, denotes the transitive tournament on n vertices, then

2n/2—1 < F(?n) < 2n—1.

® The upper bound implies that A H) exists for all acyclic H. Like the
undirected Ramsey number, A (H) can be exponential in n.

® [s the analogue of the Burr-Erd6s conjecture true for digraphs?



Is A{H) = O(n) for sparse H?

Main Question (Buci¢-Letzter—Sudakov 2019)
Is {H) = O(n) for all bounded-degree H?



Is A{H) = O(n) for sparse H?

Main Question (Buci¢-Letzter—Sudakov 2019)
Is {H) = O(n) for all bounded-degree H?

Conjecture (Sumner 1971)

If H is some orientation of an n-vertex tree, then A(H) < 2n — 2.



Is A{H) = O(n) for sparse H?

Main Question (Buci¢-Letzter—Sudakov 2019)
Is {H) = O(n) for all bounded-degree H?

Conjecture (Sumner 1971)

If H is some orientation of an n-vertex tree, then A(H) < 2n — 2.

Progress on Sumner’s conjecture

® Haggkvist—-Thomason (1991): A H) < 12n.



Is A{H) = O(n) for sparse H?

Main Question (Buci¢-Letzter—Sudakov 2019)
Is {H) = O(n) for all bounded-degree H?

Conjecture (Sumner 1971)

If H is some orientation of an n-vertex tree, then A(H) < 2n — 2.

Progress on Sumner’s conjecture

® Haggkvist—-Thomason (1991): A H) < 12n.
® Kihn—Mycroft-Osthus (2011): A H) < 2n — 2 for n large enough.



Is A{H) = O(n) for sparse H?

Main Question (Buci¢-Letzter—Sudakov 2019)
Is {H) = O(n) for all bounded-degree H?

Conjecture (Sumner 1971)

If H is some orientation of an n-vertex tree, then A(H) < 2n — 2.

Progress on Sumner’s conjecture

® Haggkvist—-Thomason (1991): A H) < 12n.
® Kihn—Mycroft-Osthus (2011): A H) < 2n — 2 for n large enough.
® Dross—Havet (2019): AH) < 2n— 1.



Is A{H) = O(n) for sparse H?

Main Question (Buci¢-Letzter—Sudakov 2019)
Is {H) = O(n) for all bounded-degree H?

Conjecture (Sumner 1971)

If H is some orientation of an n-vertex tree, then A(H) < 2n — 2.

Progress on Sumner’s conjecture

® Haggkvist—-Thomason (1991): A H) < 12n.
® Kihn—Mycroft-Osthus (2011): A H) < 2n — 2 for n large enough.
® Dross—Havet (2019): AH) < 2n— 1.

What about other sparse digraphs H?
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Is A{H) = O(n) for sparse H?

Main Question (Buci¢-Letzter-Sudakov 2019)
Is {H) = O(n) for all bounded-degree H?

Theorem (Thomason 1986)

If H is any acyclic orientation of C,, then ¥(H) = n for n large enough.

Define the bandwidth of an acyclic digraph H to be the minimum k such
that H can be ordered vy, ..., v, so that edges v; — v; exist only if
1<j—i<k

Theorem (DDFGHKLMSS 2020)
If H has bandwidth k, then A H) = Ok(n).
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Our Results

Theorem (Fox—H.-Wigderson 2021)

For all C > 0 and n large enough, there is an n-vertex acyclic digraph H
with maximum degree A < C3/2+°(1) satisfying F(H) > nC.

Theorem (Fox—H.—Wigderson 2021)

Let H be an n-vertex acyclic digraph with maximum degree A.
* In general, 7(H) < n©allogn)
® If H is chosen randomly, then H{(H) < n - (log n)®2().
® If H has height h, then {(H) = Oa n(n).

Outline of Talk

1. Proof of lower bound A H) > n'°g2(3)—o(1),
2. Proof of the height upper bound: greedy embedding.
3. Results on multicolor Ramsey numbers.
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Lower bound proof

Theorem

There exists an n-vertex acyclic digraph H with maximum degree 1000
and {(H) > nlog23)—e(1),

Let T be an iterated blowup of a
cyclic triangle on N vertices:

Key Idea: We will construct H on [n] so that in any embedding H— T,
some subinterval of [n] of length 0.49n maps to a single third of T.

We ensure that induced subgraphs of H on subintervals inherit this
property, so we can iterate. After t iterations, we find a subinterval of H
of length (0.49)*n that maps to a single part of T of size 37\
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Lower bound proof: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
0.49n is mapped into a single part, and this property is hereditary.
Definition

A digraph H on [n] is an interval mesh if edges point forward and:

Forall0 <a< b<c<d<nwith c—b<100min(b— a,d — c), there
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Lower bound proof: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
0.49n is mapped into a single part, and this property is hereditary.
Definition

A digraph H on [n] is an interval mesh if edges point forward and:

Forall0 <a< b<c<d<nwith c—b<100min(b— a,d — c), there
is an edge from (a, b] to (¢, d].

J1 b J4 J5

Thus, |Ji| > 100 min(|Ji-1|, | Ji+1])- So |Ji| is unimodal and
max; |J;| > 0.49n.

We can greedily construct interval meshes on [n] with max degree 1000.
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Upper bound proof: greedy embedding

Theorem
If H has n vertices, max degree A\, and height h, then {(H) = Oa x(n).

Lemma
If T is H-free, then T contains two large vertex sets with most edges
between them oriented the same way.

Iterating the lemma log h times, we find h sets in T with most edges
oriented forwards:

It is easy to embed H into these sets greedily.
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What about more than one color?

Definition

If k> 1, the k-color Ramsey number TZ(H) of a digraph H is the
minimum N such that any k-edge-colored N-vertex tournament contains
a monochromatic copy of H.

We showed: For k=1, if H has n vertices and maximum degree A,
then 7 (H) < n®(%en byt 7 (H) > n€ is possible for any C > 0.

Theorem (Fox—H.—Wigderson 2021)
If H has n vertices and maximum degree A, then
?,()(H) < nOA(|0gok(1) n).

For k > 2, there exists H of maximum degree 3 and
71<>(H) > nQ(Iog n/ log log n) )

Proof compares digraph Ramsey numbers to ordered Ramsey numbers.
Conlon—Fox—Lee-Sudakov and Balko—Cibulka—Kral-Kynél proved that
random ordered matchings have large ordered Ramsey numbers.
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Open questions

Let H have n vertices and maximum degree A.

Conjecture.

For any C > 0, there exist H with A independent of C for which
AH) > nC.

Conjecture.

For a random H, A(H) = Oa(n) almost surely.

Question.

We know that A H) = O(n) if H has bounded height or bounded
bandwidth. Is there a single natural notion of “multiscale complexity”
that captures both these parameters and implies A H) = O(n)?



Thank you!



