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Introduction



Ramsey Theory

Complete disorder ...

is impossible.
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Ramsey Theory

Definition
The Ramsey number R(s, t) is the smallest
N such that any red-blue coloring of the
edges of KN contains a monochromatic
red Ks or a monochromatic blue Kt.

R(4, 4) = 18.
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A Brief History of R(s, t)

Ramsey ’28. R(s, t) < ∞.

Erdős-Szekeres ’35. R(t, t) ≤ 4t.

Erdős ’47. R(t, t) ≥ 2s/2. [Random coloring]

Ajtai-Komlós-Szemerédi ’80, Kim ’95.
R(3, t) = Θ(t2/ log t).

Campos-Griffiths-Morris-Sahasrabudhe ’23.
R(t, t) ≤ 3.99t.

Mattheus-Verstraëte ’23. R(4, t) = Θ̃(t3).

Paradigm. How far can we push random lower bounds and the Erdős
Szekeres upper bound?
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More Colors

What happens if we add more colors?

Complete disorder is still impossible, but more is possible than before.
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Multicolor Ramsey numbers

Definition
The multicolor Ramsey number R(t; r) is
the smallest N such that any r-coloring of
the edges of KN contains a
monochromatic copy of t.

R(3; 3) = 17.
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A Brief History of R(t; r)

Ramsey ’28. R(t; r) < ∞.

Erdős-Szekeres ’35. R(t; r) ≤ 2rt log r.

Erdős ’47. R(t; r) ≥ rt/2. [Random coloring]

Lefmann ’87. R(t; r) ≥ 2rt/4. [Product
coloring]

Conlon-Ferber ’20, Wigderson ’20, Sawin
’21. R(t; r) ≥ 2.384rt.

Problem (Erdős $250). Is R(t; r) = 2Θ(rt) or 2Θ(rt log r)?
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Color-Avoiding Ramsey Numbers

What if we only want a clique avoiding one color?

Erdős-Szemerédi ’72
The smallest N for which any r-coloring of the edges of KN contains a
color-avoiding clique of size t satisfies 2Ω(t/r) ≤ N ≤ 2O(t log r/r)

7



Color-Avoiding Ramsey Numbers

What if we only want a clique avoiding one color?

Erdős-Szemerédi ’72
The smallest N for which any r-coloring of the edges of KN contains a
color-avoiding clique of size t satisfies 2Ω(t/r) ≤ N ≤ 2O(t log r/r)

7



Color-Avoiding Ramsey Numbers

What if we only want a clique avoiding one color?

Erdős-Szemerédi ’72
The smallest N for which any r-coloring of the edges of KN contains a
color-avoiding clique of size t satisfies 2Ω(t/r) ≤ N ≤ 2O(t log r/r) 7



Set-coloring Ramsey numbers

In this talk we study a common generalization of the multicolor Ramsey
number and the color-avoiding Ramsey number.

Definition
The set-coloring Ramsey number R(t; r, s) is the smallest N such that if
every edge of KN is colored by s out of a palette of r colors, then there
is a monochromatic clique of size t (where some single color appears
on all edges).

In particular, R(t; r, 1) is the usual multicolor Ramsey number, and
R(t; r, r− 1) is the color-avoiding Ramsey number.

Set-coloring Ramsey numbers and various special cases have been
studied by many previous authors. As far as I know the first appearance
of the general case in the literature is due to Xu, Shao, Su, Li ’10 in the
guise of multi-graph Ramsey numbers.
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Set-coloring Ramsey numbers

Color-avoiding Ramsey number Set-coloring Ramsey number

Color each edge on the right by the set of missing colors on the left.
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Warning!

There is another natural common generalization of multicolor and color
avoiding Ramsey numbers.

Definition
The set-coloring Ramsey number R(t; r, s) is the smallest N such that if
every edge of KN is colored by s out of a palette of r colors, then there
is a monochromatic clique of size t (where some single color appears
on all edges).

Definition
Define R′(t; r, s) to be the smallest N such that if every edge of KN is
colored by one of r colors, then there is a clique of size t spanning at
most s colors.

For s = 1 and s = r− 1 only, these two definitions coincide.

There has been beautiful recent work on R′(t; r, s) for hypergraphs by
Dubroff, Girão, Hurley, and Yap.
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Main Theorem

How does R(t; r, s) grow?

Theorem (Lefmann ’87, Erdős-Szekeres ’35)
2Ω(tr) ≤ R(t; r, 1) ≤ 2O(tr log r)

What happens in the middle?

Theorem (Conlon, Fox, H., Mubayi, Suk, Verstraëte ’22+)
If s/r is bounded away from 0 and 1, then R(t; r, s) = 2Θ(tr).

Theorem (Erdős-Szemerédi ’72)
2Ω(t/r) ≤ R(t; r, r− 1) ≤ 2O(t log r/r)
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Proof

Upper Bound.
If s/r is bounded away from 0, then R(t; r, s) = 2O(tr).

It’s a straightforward variation of the Erdős-Szekeres algorithm.

Pick a vertex and find the most common color incident to it, with
frequency at least s/r among all edges incident to this vertex.

Restrict to this monochromatic neighborhood and iterate, each time
shrinking by s/r.

After tr steps, we surely saw the same color t times and shrank by a
factor of at most (s/r)tr.

As long as N > (r/s)tr = 2O(tr), this works.

12
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Proof

Lower Bound
If s/r < 1

2 , then R(t; r, s) = 2Ω(tr).

Let G be the Ramsey construction for R(t; 2, 1) of size 2t/2 (random).

Take r/2 copies of G, where each new copies uses two new colors. Let H
be the product of these copies, whose vertex set is [2t/2]r/2 and an edge
(u, v) is colored by the color of all (ui, vi) where ui ̸= vi.

Pass to an induced subgraph on an error-correcting code of distance s to
guarantee that each edge receives at least s colors.

Such a code of size 2tr/4/(rs2ts/2) exists, so we are done.

13
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(u, v) is colored by the color of all (ui, vi) where ui ̸= vi.

Pass to an induced subgraph on an error-correcting code of distance s to
guarantee that each edge receives at least s colors.
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Followup Work

Theorem (Conlon, Fox, H., Mubayi, Suk, Verstraëte ’22+)
If s/r is bounded away from 0 and 1, then R(t; r, s) = 2Θ(tr).

Followup Direction 1: what happens for s/r near 0 and 1?

Our methods leave a logarithmic gap for s = o(r) and a polynomial gap
for s = r− o(r).

Theorem (Aragão, Collares, Marciano, Martins, Morris ’23)
If r > s ≥ 1 and s = (1− ε)r, we have

R(t; r, s) = 2Θ(ε2rt)

for all t sufficiently large.

This settles the exponent up to logarithmic factors in all ranges. They
replace our product+codes construction with random
blowups+alterations (closer to the multicolor Ramsey constructions of
Conlon-Ferber, Wigderson, Sawin).
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Followup Work

Theorem (Conlon, Fox, H., Mubayi, Suk, Verstraëte ’22+)
If s/r is bounded away from 0 and 1, then R(t; r, s) = 2Θ(tr).

Followup Direction 2: what happens when t is fixed and s/r approaches
the Turán density 1− 1/(t− 1)?

Corollary
If t is fixed and s/r is less than and bounded away from 1− 1

t−1 , then
R(t; r, s) grows exponentially in r.

If t is fixed and s/r is greater than and bounded away from 1− 1
t−1 , then

R(t; r, s) is bounded.

Theorem (Conlon, Fox, Pham, Zhao ’23)
If t is fixed and s/r is close to 1− 1

t−1 , then R(t; r, s) is tightly controlled
by At−1(r, s), the size of the largest error-correcting code with alphabet
size t− 1, length r, and distance s.
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Followup Work

Theorem (Conlon, Fox, H., Mubayi, Suk, Verstraëte ’22+)
If s/r is bounded away from 0 and 1, then R(t; r, s) = 2Θ(tr).

Followup Direction 3: a connection hypergraph and grid Ramsey
numbers

Let S(3)n be the 3-uniform star, the hypergraph on n+ 1 vertices whose
edges are all

(n
2
)
triples containing a given vertex. Let K(3)n be the

3-uniform complete graph on n vertices.

Theorem (Conlon, Fox, H., Mubayi, Suk, Verstraëte ’23)
We have 2Ω((log n)2) ≤ R(S(3)n , K(3)4 ) ≤ 2n2/3+o(1) , while R(S(3)n , K(3)m ) = 2Θ(n) for
m ≥ 5 fixed.

The upper bound uses the Erdős-Szemerédi color-avoiding Ramsey
number, while generalizations thereof use the set-coloring Ramsey
number.
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Followup Work

Theorem (Conlon, Fox, H., Mubayi, Suk, Verstraëte ’22+)
If s/r is bounded away from 0 and 1, then R(t; r, s) = 2Θ(tr).

Followup Direction 3: a connection hypergraph and grid Ramsey
numbers

r(S(3)n , K(3)4 ) can be reduced to a bipartite version, which is equivalent to a
Ramsey number on grid graphs.

Theorem (Conlon, Fox, H. Mubayi, Suk, Verstraëte ’23)
The minimum N such that any red-blue coloring of the edges of KN□KN
contains either a red rectangle (i.e. induced C4) or a blue Kn satisfies

2Ω((log n)2) ≤ N ≤ 2n
2/3+o(1)

.

The proofs use set-coloring Ramsey numbers and bear some similarity
to the ”pigeonhole one dimension at a time” arguments in the
multi-dimensional Erdős-Szekeres problem.
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Open Problems

1. Close the logarithmic gap for s = 1:

2Ω(rt) ≤ R(t; r, 1) ≤ 2O(rt log r)

2. Close the logarithmic gap for s = r− 1:

2Ω(t/r) ≤ R(t; r, r− 1) ≤ 2O(t log r/r).

3. Determine the minimum N such that any red-blue coloring of the
edges of KN□KN contains either a red rectangle or a blue Kn.

2Ω((log n)2) ≤ N ≤ 2n
2/3+o(1)

.
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